✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 36744 Укажите, для какого слова ложно

УСЛОВИЕ:

Укажите, для какого слова ложно высказывание:
(Первая буква слова гласная ИЛИ Вторая буква слова согласная )
1)Арбуз
2)Ответы
3)Кресло
4)Пока

РЕШЕНИЕ ОТ slava191 ✪ ЛУЧШЕЕ РЕШЕНИЕ

Если навесить отрицание над ИЛИ, то по законам де Моргана получится выражения Первая буква НЕ ГЛАСНАЯ [b]И[/b] Вторая буква НЕ СОГЛАСНАЯ - так будет проще выявить слово - ПОКА

Ответ 4

Вопрос к решению?
Нашли ошибку?

Добавил _masha_28, просмотры: ☺ 177 ⌚ 2019-05-05 18:42:56. информатика класс не задан класс

Решения пользователей

РЕШЕНИЕ ОТ vk201218220

4)

Физика и математика школьникам и студентам на канале [link=https://www.youtube.com/channel/UCF8oYoXwjBs9h9Sc44iPB6w]

Вопрос к решению?
Нашли ошибку?

РЕШЕНИЕ ОТ oleg_i

кресло

Вопрос к решению?
Нашли ошибку?

РЕШЕНИЕ ОТ ged

пока

Вопрос к решению?
Нашли ошибку?
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
Прямая АВ имеет угловой коэффициент, равный (-1)
См. рис.

Симметричная ей относительно оси Оу прямая имеет угловой коэффициент, равный 1

Можно составить уравнение прямой АВ

y=kx+b

Подставим координаты точек А и В:
{3=-k+b
{2=0*k+b


b=2
k=-1

угловой коэффициент прямой АВ :
k_(AB)=-1

(прикреплено изображение)
✎ к задаче 40718
Задача на круги Эйлера.
Не может быть пересечение больше
(прикреплено изображение)
✎ к задаче 40720
Области существования выражения, стоящего под знаком логарифма: x^2+6x+9 >0 ⇒ (x+3)^2 >0 ⇒ x ≠ 3

Находим нули числителя:
2x^2+9x+7=0
D=81-4*2*7=81-56=25
x_(1)= - 3,5; x_(2)= -1


Отмечаем их на области сплошным закрашенным кружком

Находим нули знаменателя:

log_(3)(x^2+6x+9)=0

x^2+6x+9=3^(0)
x^2+6x+8=0
D=36-32=4
x_(3)=-4; x_(4)=-2

Отмечаем пустым, не заполненным кружком.

Расставляем знаки:
Числитель неотрицателен на (- ∞ ;-3,5] U [-1;+ ∞ )

Знаменатель положителен на (- ∞ ;-4) U (-2;+ ∞ )

Дробь положительна, когда числитель и знаменатель имеют одинаковые знаки( оба положительны или оба отрицательны)

_+_ (-4)_-_ [-3,5] _+_ (-3) __+__ (-2) __-__ [-1] __+__

О т в е т. (- ∞ ;-4)U[3,5;-3) U(-3;2)U[-1;+ ∞ )
✎ к задаче 40721
Корни есть и они различные, значит D >0

D=(2(a-2))^2-4*(a^2-2a-3)=4a^2-16a+16-4a^2+8a+12=28-8a

28-8a >0

a< \frac{7}{2}

Корни положительные, значит парабола y=x^2-2(a-2)x+a^2-2a-3
пересекает ось Ох справа от нуля.

Значит вершина параболы правее нуля, т.е
x_(o)=a-2
x_(o) >0

a-2 >0

Значение функции y=x^2-2(a-2)x+a^2-2a-3 при х=0 положительно.
y(0)=a^2-2a-3

Система:
{a< \frac{7}{2}
{a-2 > 0 ⇒ a > 2
{a^2-2a-3 >0 ⇒ D=16; корни -1 и 3, a<-1 или a>3


О т в е т. (3;3,5)

(прикреплено изображение)
✎ к задаче 40717
В прямоугольном треугольнике катет против угла в 30 градусов
равен половине гипотенузы.
Значит легко найти
a=2\sqrt[4]{3}

H=4\sqrt[4]{3}cos 30^{o}=2\sqrt[4]{3}\sqrt{3}

S_(осн)=a^2\frac{\sqrt{3}}{4}=3

S_(бок)=3a*H=3*2\sqrt[4]{3}*2\sqrt[4]{3}\sqrt{3}=36

S_(полн)=S_(бок)+2S_(осн)=36+6=[b]42[/b]
(прикреплено изображение)
✎ к задаче 40714