✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 365 Два камня свободно падают без начальной

УСЛОВИЕ:

Два камня свободно падают без начальной скорости с высоты h = 80 м. Второй камень начинает двигаться на 2 с позже первого. Постройте график зависимости от времени проекции скорости первого камня относительно второго на ось, направленную вертикально вверх. Интервал времени взять от начала движения первого камня до момента падения на землю второго камня. Силами сопротивления пренебречь, ускорение свободного падения принять равным g = 10 м/с2.

Добавил slava191, просмотры: ☺ 4833 ⌚ 06.01.2014. физика 10-11 класс

Решения пользователелей

Хочешь предложить свое решение? Войди и сделай это!
На нашем сайте такое бывает редко, но решение к данной задаче еще никто не написал.

Что Вы можете сделать?

  1. Напишите решение или хотя бы свои догадки первым.
  2. Заказать эту задачу у партнеров сайта: на этой странице.
  3. Найдите похожую задачу. Используйте поиск.
Увы, но свой вариант решения никто не написал... Будь первым!

Написать комментарий

Последнии решения
vector{a}=(1; -2; -2)

Пусть vector{x}=(x_(1);x_(2);x_(3))

Координаты коллинеарных векторов пропорциональны.
Значит
x_(1)/1=x_(2)/(-2)=x_(3)/(-2) = k

x_(1)=k
x_(2)=-2k
x_(3)=-2k

|vector{x}|=sqrt((k^2)+(-2k)^2+(-2k)^2)=sqrt(9k^2)=3|k|

По условию |vector{x}|=15

3*|k|=15
|k|=5
k= ± 5

При k=-5
vector{x}=(5;-2*5;-2*5)=(5;-10;-10)

При k=-5
vector{x}=(-5;-2*(-5);-2*(-5))=(-5;10;10)

О т в е т. (-5;10;10) образует с vector{j} острый угол, так как
cos β =2/|vector{x}|=2/15 > 0
[удалить]
✎ к задаче 30240
1
1) ∫ ^(3)_(1)(x^4+x-9)dx=((x^5/5)+(x^2/2)-9x)|^(3)_(1)=

=((3^5/5)+(3^2/2)-9*3)-((1^5/5)+(1^2/2)-9*1)=

=(243/5)+(9/2)-27)-((1/5)-(1/2)-9)=

=(243-1)/5+(9-1)/2 -27+9=48,5+4-18=34,5

2) ∫ ^(3)_(2)dx/(x-1) =
подведение под дифференциал
d(x-1)=(x-1)`*dx=1*dx=dx

= ∫ ^(3)_(2)d(х-1)/(x-1) = ( табличный интеграл ∫du/(u) )

=(ln|x-1|)|^(3)_(2)=ln(3-1)-ln(2-1)=ln2-ln1=ln2-0=ln2

3) ∫ ^(5)_(4)dx/sqrt(x-3) =

подведение под дифференциал
d(x-3)=(x-3)`*dx=1*dx=dx

= ∫ ^(5)_(4)d(х-3)/sqrt(x-3) = ( табличный интеграл ∫du/sqrt(u) )

= (2*sqrt(x-3))|^(5)_(4)=2sqrt(5-3)-2sqrt(4-3)=
=2sqrt(2)-2

4) ∫ ^(2)_(1)(x^3-2)*x^2dx=раскрываем скобки

= ∫ ^(2)_(1)(x^3*x^2-2x^2)dx= свойства интегрирования:
интеграл от разности равен разности интегралов, постоянный множитель можно выносить за знак интеграла)

= ∫ ^(2)_(1)x^5dx - 2∫ ^(2)_(1)x^2dx=

=(x^6/6)|^(2)_(1) -2*(x^3/3)|^(2)_(1)=

=(2^6/6)-(1^6/6)-2*((2^3/3)-(1^3/3))=

=(32/3)-(1/6)-(16/3)+(2/3)=35/6

5) ∫ ^(1)_(0)(2+x)e^(x)dx
интегрирование по частям ∫ udv=u*v- ∫ v*du

Обозначаем
u=(2+x) ⇒ du=(2+x)`dx ; du=dx
dv=e^(x)dx ⇒ ∫ dv= ∫ e^(x)dx ⇒ v =e^(x)

∫ (2+x)e^(x)dx=(2+x)*e^(x)- ∫e^(x)*dx = (2+x)*e^(x)+e^(x)=(2+x+1)*e^(x)


∫ ^(1)_(0)(2+x)e^(x)dx=((3+x)*e^(x)| ^(1)_(0) =(3+1)*e-(3+0)*e^(0)=

=4e-3

6) ∫ ^(2)_(1)3x*lnxdx=
интегрирование по частям:
[u=lnx ⇒ du=(1/x)dx;
dv=3xdx ⇒ v=3x^2/2

∫ ^(2)_(1)3x*lnxdx= ((3/2)x^2*lnx)|^(2)_(1)-∫ ^(2)_(1)(3x/2)dx=

= (3/2)*2^2*ln2-(3/2)*1^2*ln1-(3x^2/4)|^(2)_(1)=

=6ln2 - 0 - ((3*2^2/4)-(3*1/4)) =

=6ln2 -(3-3/4)= 6 ln2 - (9/4)

2

1) S= ∫^(4)_(2)(3x-1)dx=((3x^2/2)-x)|^(4)_(2)=(24-4)-(6-2)=20-4=16

2) S=∫^(3)_(0)((-1/3)x^2+3)dx=

=((-1/3)*(x^3/3) +3x)|^(3)_(0)=(-1/3)*(3^3/3)+3*3=-3+9=6

3)
Находим абсциссы точек пересечения графиков:
-x^2+6=2x+3;
x^2+2x-3=0
D=4-4*(-3)=16
x_(1)=(-2-4)/2=-3; х_(2)=(-2+4)/2=1

S= ∫^(1)_(-3) ((-x^2+6)-(2x+3))dx=

= ∫^(1)_(-3)(-x^2-2x+3)dx= ((-x^3/3)-(2x^2/2)+3x)|^(1)_(-3)=

=(-1/3)-1+3-(9-9-9)=10(2/3)
(прикреплено изображение) [удалить]
✎ к задаче 30238
6
1) lim_(x→1)(x^3-4x^2-2)=1^3-4*1^2-2=-5;

2) lim_(x→2)(x^4-5x+6)/(8x^2-3)=(2^4-5*2+6)/(8*2^3-3)=12/29

3)lim_(x→2)(5x-10)/(x^2-4)=(0/0) это неопределенность. Ее надо устранить. Раскладываем и числитель и знаменатель на множители:
lim_(x→2)(5(x-2))/((x-2)*(х+2))= можно сократить на (х-2), это не 0, х только стремится к 2,
=lim_(x→2)(5)/(x+2)=5/(2+4)=5/6

4) lim_(x→0,5)(10x^2-x-2)/(2x-1)=(0/0)
Раскладываем и числитель и знаменатель на множители:
lim_(x→0,5)((2x-1)(5x+2))/(2x-1)= можно сократить на (2х-1),
=lim_(x→0,5)(5x+2)=4,5

5) lim_(x→2)(x^2+3x-10)/(3x^2-5x-2)=(0/0)
Раскладываем и числитель и знаменатель на множители:
lim_(x→2)((x-2)(x+5))/((x-2)(3x+1))= можно сократить на (х-2),
=lim_(x→2)(x+5)/(3x+1)=(2+5)/(3*2+1)=7/7=1

6) lim_(x→5)(sqrt(x-1)-2)/(x-5)=(0/0)
Умножаем и числитель и знаменатель на
(sqrt(x-1)+2)
lim_(x→5)(sqrt(x-1)-2)(sqrt(x-1)+2)/((x-5)*(sqrt(x-1)+2))=
=lim_(x→5)(sqrt(x-1))^2-2^2)/((x-5)*(sqrt(x-1)+2))=
=lim_(x→5)(x-1-4)/((x-5)*(sqrt(x-1)+2))= сокращаем на (х-5)=
=lim_(x→5)1/(sqrt(x-1)+2)=1/(sqrt(5-1)+2)=1/4
(прикреплено изображение) [удалить]
✎ к задаче 30237
Это удалите, баллы к Вам вернутся и разделите баллы на количество вопросов. [удалить]
✎ к задаче 30236
(x^2+(x+a))^2=2x^4+2*(x+a)^2
Раскрываем скобки:
x^4+2*x^2*(x+a)+(x+a)^2=2x^4+2*(x+a)^2
x^4-2*x^2*(x+a)+(x+a)^2=0
(x^2-(x+a))^2=0
x^2-x-a=0
Квадратное уравнение.
Решаем графически.

График y=x^2-x-a - парабола, ветви вверх.

Чтобы парабола пересекала ось Ох в единственной точке отрезка [0;2] необходимо выполнение условий:
1)
{f(0) ≥ 0 ⇒ 0^2 -0 - a ≥0 ⇒ a≤0
{f(2) < 0 ⇒ 2^2 - 2 - a <0 ⇒ a>2

нет пересечения множеств a≤0 и a > 2

2)
{f(0) < 0 ⇒ -a < 0 ⇒ a > 0
{f(2) ≥ 2 ⇒ a ≤ 2
(0;2]

См. рисунок.
Парабола должна быть расположена примерно так, как на рисунке.

О т в е т. (0;2]
(прикреплено изображение) [удалить]
✎ к задаче 30233