du/dx=(y-z)*(e^(x)/x^2)`_(x)=(y-z)*(e^(x)*x^2-2x*e^(x))/x^4=
=(y-z)*e^(x)(x-2)/x^3
(∂u/∂y)=(e^(x)/x^2)*(y-z)`_(y)=(e^(x)/x^2)*1=(e^(x)/x^2)
(∂u/∂z)=(e^(x)/x^2)*(y-z)`_(z)=(e^(x)/x^2)*(-1)= - (e^(x)/x^2)
dy/dx=(sinx)`_(x) = cosx
dz/dx=(cosx)`_(x) = - sinx
О т в е т.
du/dx= [b] (y-z)*e^(x)(x-2)/x^3 + (e^(x)/x^2)* cosx - (e^(x)/x^2)*(-sinx)[/b]