ctg(arctg(√3/4) + arctg(3√3/7))
Обозначим arctg(√3/4)= α ⇒ tg α =√3/4; α ∈ (–π/2;π/2)⇒ ctgα=1/tgα=4√3/3 arctg(3√7/7)= β ⇒ tg β =3√7/7; β ∈ (–π/2;π/2)⇒ ctgβ=1/tgβ=√7/3 ctg( α + β )=(ctg α ·ctg β –1)/(ctg α +ctg β ) = =((4√21/3)–3)/(4√3+√7)