ЗАДАЧА 359 При наблюдении в воздухе интерференции

УСЛОВИЕ:

При наблюдении в воздухе интерференции света от двух когерентных источников на экране видны чередующиеся темные и светлые полосы. Как изменится ширина полос, если наблюдение производить в воде, сохраняя все остальные условия неизменными? Показатель преломления воздуха n0 = 1, воды n = 1,33.

О решении...

Добавил slava191 , просмотры: ☺ 1556 ⌚ 06.01.2014. физика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.
Увы, но свой вариант решения никто не написал... Будь первым!

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

SOVA ✎ (x-5-x)*(x-5+x)=3 -5*(2x-5)=3 2x-5=-3/5 2x=5-(3/5) 2x=22/5 x=11/5 О т в е т. 11/5 к задаче 26641

SOVA ✎ Если прямая у=k_(1)x+b_(1) перпендикулярна прямой у=k_(2)x+b_(2), то k_(1)*k_(2)= - 1 Перепишем уравнение прямой x–20y+5=0 в виде y=(1/20)x+(5/20) k_(1)=1/20 k_(2)=-20 Угловой коэффициент касательной k( касательной) = - 20 Геометрический смысл производной в точке: f`(x_(o)=k(касательной) f`(x)=(-3x^2+4x+7)`=-6x+4 f`(x_(o))=-6x_(o)+4 -6x_(o)+4=-20 -6x_(o)=-24 x_(o)=4 y_(o)=-3*4^2+4*4+7=-48+16+7=-25 О т в е т. (4;-25) к задаче 26643

SOVA ✎ ОДЗ: {8x^2+24x-16 > 0 ⇒ 8*(x^2+3x-2) > 0 ⇒ D=17;x =(-3 ±√17)/2 {x^4+6x^3+9x^2 > 0 ⇒ x^2(x^2+6x+9) > 0 ⇒ x^2*(x+3)^2 > 0⇒x≠ 0 и х≠ -3 {x^2+3x-10 ≠0⇒ D= 49; x≠ -5 и х≠ 2 x^2+3x-2 > 0 D=9-4*(-2)=17 x_(1)=(-3-sqrt(17))/2 или x_(2)=(-3+sqrt(17))/2 ОДЗ (- бесконечность ;-5)U(-5;(-3-sqrt(17))/2)U((-3+sqrt(17))/2;2)U(2;+ бесконечность ) log_(0,5)(8x^2+24x-16)=log_(2)(8*(x^2+3x-2))/log_(2)0,5= =-log_(2)8(x^2+3x-2) Тогда log_(0,5)(8x^2+24x-16)+log_(2)(x^4+6x^3+9x^2)= =-log_(2)(8*(x^2+3x-2))+log_(2)x^2(x+3)^2= =log_(2)(x^2*(x+3)^2/(8*(x^2+3x-2)))= =log_(2)(x*(x+3))^2/(8*(x^2+3x-2)= =log_(2)(x^2+3x)^2/(8*(x^2+3x-2)) Неравенство принимает вид: (log_(2)(x^2+3x)^2/(8*(x^2+3x-2)))/(x^2+3x-10) больше или равно 0 Замена переменной x^2+3x=t (log_(2)t^2/(8t-16))/(t-10) больше или равно 0 Неравенство равносильно двум системам 1) {log_(2)(t^2)/(8t-16) больше или равно 0 {x^2+3x-10 > 0 или 2) {log_(2)(t^2)/(8t-16) меньше или равно 0 {x^2+3x-10 < 0 Решаем первое неравенство: {log_(2)(t^2)/(8t-16) больше или равно 0 (2-1)*((t^2/(8t-16))-1)больше или равно 0 (t^2-8t+16)/(8t-16) больше или равно 0 так как t^2-8t+16 > 0 при любом t ⇒ 8t-16 > 0 ⇒ t > 2 ⇒ x^2+3x-2 > 0 1) {x^2+3x-2 > 0 ( см. ОДЗ) { D=49 x∈ (-∞; -5)U(2;+∞) 2) {(x^2+3x-2 < 0 - противоречит ОДЗ {x∈ (-5;2) Cистема не имеет решений С учетом ОДЗ О т в е т. ( (-∞; -5)U(2;+∞) к задаче 26636

u821511235 ✎ к задаче 26638

SOVA ✎ y(0)=-3 - 3 = (0^3/6)-sin0+C_(1)0+C_(2) ⇒ С_(2) = - 3 y`= (x^2/2)-cosx + C_(1) y`(0)=0 0=(0/2)-cos0+C_(1) C_(1)=1 О т в е т. С_(1)=1; С_(2)=-3 к задаче 26617