а) 5у = x2, y2 = 5x;
б) { x = 8cos3(t)
y = 2sin3(t), π/4 ≤ t ≤ 0;
в) ρ = 2cos4φ.
y=x2/5 – парабола красным цветом
y=√5x – степенная функция, синим
S= ∫ 50(√5x–(x2/5))dx=
= (√5·x3/2/(3/2)–(1/5)·(x3/3) )|50=
=(2√5/3)·√53–(1/15)·53=
=(50/3)–(25/3)= 25/3
б)
S= ∫ t2t1y(t)·x`(t)dt
y(t)=8cos3t
x(t)=2sin3t
x`(t)=2·3·sin2t·(sint)`=6sin2tcost
S= ∫ π/408·cos3t·6sin2tcostdt=
=48 ∫ π/40cos4t·sin2tdt= понижаем степени
=48 ∫ π/40((1+cos2t)/2)2·(1–cos2t)dt/2=
=6 ∫ π/40((1–cos22t)·(1+cos2t)dt=
=6 ∫ π/40((1–cos22t+cos2t–cos32t)dt=
=6 ∫ π/40((1–(1+cos4t)/2+cos2t–(1–sin22t)·cos2t)dt=
=6· ((t/2)–(1/8)sin4t +(1/2)(sin32t)/3 )|π/40=
=6π/8= 3π/4
в)
S=(1/2) ∫ β α ρ2( φ )d φ
cos4φ ≥0
–π/2 ≤4φ≤π/2
–π/8 ≤φ≤π/8
4 лепестка ( см. рис.2),
считаем площадь половины лепестка и умножаем на 8
S=(1/2) ·8·∫ π/80 (2cos4φ)2dφ=
=16·∫π/80 (cos24φ)dφ= понижаем степень
=16·∫ π/80 ((1+сos8φ)/2)dφ=
=8·( φ +(1/8)sin8 φ )|π/80 =
=8·(π/8)= π