z = 0, y = √x, y = 2√x, x + z = 6.
D: 0 ≤ х ≤ 6
√x ≤ y ≤ 2√x
z=6–x ⇒ f(x;y)=6–x
V= ∫ 60 (∫ 2√x√x(6–x)dy ) dx=
=∫ 60 (6–x)·y|2√x√xdx
=∫ 60 (6–x)·(2√x–√x)dx=
= ∫ 60 (6√x–x√x)dx=
=(6·x3/2/(3/2)– x5/2/(5/2))|60=
=6·(2/3)·63/2–(2/5)·65/2=
=4·√63–(2/5)·√65= 9,6√6