{x = 6cost 5π/6 ≤ t ≤ π/6;
{ y = 6sint
ρ = 3sin6φ.
Вычислить длины дуг кривых:
{x = 3(2cost – cos2t), 0 ≤ t ≤ 2π;
y = 3(2sint – sin2t)
ρ = 2e4φ/3, –π/2 ≤ φ ≤ π/2.
= ∫π/65π/6 6sint·(6cost)`dt=
=–36 ∫π/65π/6 sin2tdt=
=–36∫π/65π/6 (1–cos2t)dt/2=
=–18·(t–(1/2)sin2t)|π/65π/6=
=18·(4π/6)+9·(sin(2π/6)–sin(10π/6))=
=12π+9·((√3/2)–(–√3/2))= 12π+9√3
S=(1/2)∫ β α ρ2( φ )d φ =
=6· ∫ π/60(3sin6 φ )2d φ =
=54 ∫ π/60(sin26 φ )d φ=
=54 ∫ π/60(1–cos12 φ )d φ/2=
=27·( φ – (1/12)sin(12 φ ))π/60=
=27·(π/6)–(1/12)sin2π+(1/12)sin0=
=9π/2
3.
x(t)=3·(2cost–cos2t)
y(t)=3·(2sint–sin2t)
L= ∫ t2t1√(x`(t))2+(y`(t))2dt
x`(t)=3·(–2sint+2sin2t)
y`(t)=3·(2cost–2cos2t)
(x`(t))2=9·(4sin2t–8sint·sin2t+4sin22t)
(y`(t))2=9·(4cost–8costcos2t+4cos22t)
(x`(t))2+(y`(t))2=9·(4·(sin2t+cos2t)–8sint·sin2t–8costcos2t+4·(sin22t+cos22t))=
=9·(8–8·(cos(2t–t))=9·8·(1–cost)=72·2sin2(t/2)=144sin2t/2
L= ∫ 2π0√144sin2(t/2)dt=
=12 ∫ 2π0sin(t/2)dt=
=12(–2cos(t/2))2π0=
=–24·(cosπ–cos0)= 48
4.
L= ∫ β α √ρ2+(ρ`)2dφ
ρ=2e4φ /3
ρ`=2e4 φ /3·(4 φ /3)`=2·(4/3)·e4 φ /3=(8/3)e4 φ /3
ρ2+(ρ`)2=(2e4φ /3)2+((8/3)e4φ /3)2=
=(e4 φ /3)2·(4+(64/9))= ((10/9)e4 φ /3)2
L= ∫ π/2 – π/2(10/9)·e4 φ /3d φ =
=(3/4)·(10/9)e4 φ /3|π/2–π/2=
= (5/6)·(e2π/3–e–2π/3)