✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 35538 подскажите пожалуйста ,как решать 6

УСЛОВИЕ:

подскажите пожалуйста ,как решать 6 номер в 9 варианте

РЕШЕНИЕ ОТ sova ✪ ЛУЧШЕЕ РЕШЕНИЕ

ОДЗ и формула перехода к другому основанию.


{x+6>0⇒ x> -6
{x+6 ≠ 1 ⇒ x ≠ -5 при этом 1/(х+6) так же отлично от 1
{(x-5)/(x+5) >0 ⇒ x < -5 или x >5
{log_(1/2)(x-5)/(x+5) >0 ⇒ (x-5)/(x+5)<1 ⇒ -10/(x+5) < 0 ⇒ x > -5
{log_(2)(x+5)/(x-5) >0 ⇒ (x+5)/(x-5)>1 ⇒10/(x-5) >0 ⇒ x > 5


[b]x ∈ (5;+ ∞ )[/b]


log_(x+6)log_(1/2)(x-5)/(x+5)= log_(x+6)log_(2^(-1))(x-5)/(x+5)=

= log_(x+6)(-log_(2)(x-5)/(x+5))= log_(x+5)(log_(2)((x-5)/(x+5))^(-1))=

= log_(x+6)(log_(2)((x+5)/(x-5)))

log_(1/(x+6))(log_(2)((x+5)/(x-5)))=-log_(x+6) (log_(2)((x+5)/(x-5))

Неравенство принимает вид:


log_(x+6) (log_(2)((x+5)/(x-5)) < - log_(x+6) (log_(2)((x+5)/(x-5))

2log_(x+6) (log_(2)((x+5)/(x-5)) <0

log_(x+6) (log_(2)((x+5)/(x-5)) <0

так как согласно ОДЗ x>5, то х+6 > 1

логарифмическая функция возрастает.

(log_(2)((x+5)/(x-5)) <1

логарифмическая функция c основанием 2>1 возрастает.

(x+5)/(x-5) < 2

(x+5-2x+10)/(x-5) <0

(x-15)/(x-5) >0

x>15

О т в е т. (15;+ ∞ )

Вопрос к решению?
Нашли ошибку?

Добавил oner88, просмотры: ☺ 52 ⌚ 2019-04-08 19:34:22. математика 10-11 класс

Решения пользователей

Лучший ответ к заданию выводится как основной
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
(прикреплено изображение) [удалить]
✎ к задаче 38644
https://youtu.be/TCYxxYO_5ag
поставьте лайк)
[удалить]
✎ к задаче 38497
(прикреплено изображение) [удалить]
✎ к задаче 38641
(прикреплено изображение) [удалить]
✎ к задаче 38638
(прикреплено изображение) [удалить]
✎ к задаче 38640