Основное логарифмическое тождество:
alog ab=b
a>0;a ≠ 1; b>0
(1–22)=1–4=–3
Логарифмы отрицательных чисел не существуют
Применить формулу нельзя.
2.
(82/5)1/2=8(2/5)·(1/2)=81/5
∛64=∛43=4
81/5·4=(23)1/5·22=23/5·22=2(3/5)+2=213/5
3.
√14=√7·√2
√14·(√7+2–3√2)=
=√7·√7·√2+2√14–3√7·√2·√2=
=7·√2 +2sqrt·(14)–6√7
4.
a6+b6=(a2)3+(b2)3=
формула (m3+n3=(m+n)·(m2–mn+n2);
m=a2; n=b2)
=(a2+b2)·((a2)2–a2·b2+(b2)2)=(a2+b2)·(a4–a2b2+b4)
(a6+b6)/(a4–a2b2+b4)=a2+b2
5a)
(1+tg230 °)·(1–tg230 °)–ctg260 °=
=(1+(√3/3)2)·(1–(√3/3)2)·–(√3/3)2=
=(1+(1/3))·(1–(1/3)) – (1/3)=(12–(1/3)2– (1/3)=(8/9)–(6/9)=2/9
5b)
(sin(π/6) – cos(π/6))2+tg(7π/4)=
= sin2(π/6)–2sin(π/6)·cos(π/6)+ cos2(π/6)+tg(2π–(π/4))=
= 1– sin(2·(π/6))– tg(π/4)=1–sin(π/3)+1=–sin(π/3)= –√3/2;
6a)
1–cos2 α =sin2 α
1–cos2 α +sin2 α =sin2 α +sin2 α =2sin2 α
ctg(5π/4)=ctg(π+(π/4))=ctg(π/4)=1
(1–cos2 α +sin2 α)·сtg(5 π/4)=2sin2 α ·1=2sin2 α
6b)
2sin2 α+cos2 α =sin2 α +sin2 α +cos2 α =
=sin2 α +(sin2 α +cos2 α)=sin2 α +1
sin4 α –1=(sin2 α –1)·(sin2 α +1)
(2sin2 α+cos2 α)·(sin2 α –1)/(tg α·(sin4 α –1))=
=(sin2 α +1)·(sin2 α –1)/(tg α·(sin2 α –1)·(sin2 α +1))=
=1/tg α =ctg α
При α =π/4
ctg(π/4)=1
6c
sin(– α ) =– sin α
sin(π– α )=sin α
tg((π/2)+ α )= – ctgα
sin(– α )+sin(π– α )·(tg((π/2)+ α )=
=–sin α +sin α ·(cos α /sin α )=–sin α +cos α
7.
cos1230 °= cos( 4·360 ° – 210 °)=
=cos(–210 °)= cos(–180 ° – 30 °)=
=–cos(30 °)=–√3/2:
sin(–405 °)=–sin405 ° =
=– sin( 360 ° + 45 °)=–sin 45 °= – √2/2:
tg(–7π/3)=–tg(7π/3)=–tg(2π+(π/3))= – tg(π/3)= – √3;
ctg(29π/6)=ctg((30π/6)–(π/6))=ctg(5π– (π/6))=ctg(–π/6)=– √3.