2) 4sin²2x+3=4cos²x
sin2x(cosx –1) – (cosx –1) = 0
(cos x –1)(sin2x –1) = 0
cosx –1 = 0 sin2x –1 = 0
cosx = 1 sin2x = 1
x = πk, k ∈Z 2x =π/2 + πn, n ∈Z
x = π/4 + πn/2, n ∈Z
4sin²2x+3=4cos²x
4·4sin²x·cos²x+3–4cos²x=0
4cos²x(4sin²x–1)+3=0
4cos²x·(4sin²x–4+3)+3=0
4cos²x(3–4cos²x)+3=0
12cos²x–16cos⁴x+3=0
cos²x=t
t>0;t≤1;
16t²–12t–3=0
t₁,₂=[6⁺₋√(36+4·16·3)]/32=(6⁺₋√228)/32=(6⁺₋15.1)/32;
t₁=(6+15.1)/32=0.659;⇒cos²x=0.659;⇒cosx=⁺₋√659=⁺₋0.812;
x₁=⁺₋arccos(0.812)+2kπ;k∈Z;
x₂=⁺₋arccos(–0.812)+2kπ;k∈Z;
t₂=(6–15.1)–32=–0.284⇒t<0⇒решения нет