Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 33946 ...

Условие

Найти сумму корней на отрезке

Sin² 2x + sin² 3x = 1, x ∈ [0; 2π]

математика 1133

Решение

(1–cos4x)/2 + (1–cos6x)/2=1;

–cos4x – cos6x=0
cos4x+cos6x=0

2cos5x·cosx=0

cos5x=0 ⇒ 5x=(π/2)+πn, n ∈ Z ⇒ x=(π/10)+(π/5)·n, n ∈ Z

cosx=0 ⇒ x=(π/2)+πk, k ∈ Z

Второй ответ включен в первый.

О т в е т. (π/10)+(π/5)·n, n ∈ Z

Отрезку [0;2π] принадлежат 10 корней:

(π/10)
(π/10)+(π/5)=(3π/10)
(π/10)+(π/5)·2=(5π/10)=(π/2)
(π/10)+(π/5)·3=(7π/10)
(π/10)+(π/5)·4=(9π/10)
(π/10)+(π/5)·5=(11π/10)
(π/10)+(π/5)·6=(13π/10)
(π/10)+(π/5)·7=(15π/10)=(3π/2)
(π/10)+(π/5)·8=(17π/10)
(π/10)+(π/5)·9=(19π/10)

Сумма корней
S=(π/10)+(3π/10)+(5π/10)+(7π/10)+(9π/10)+(11π/10)+(13π/10)+(15π/10)+(17π/10)+(19π/10)=

=(π/10)·(1+3+5+7+9+11+13+15+17+19)= (π/10)·(1+19)·10/2=

= (π/10)·(100)=10π

Обсуждения

Все решения

Обсуждения

Написать комментарий

Меню

Присоединяйся в ВК