∫ xdx/(sin2x) от π/4 до π/3
∫ (4x–1)dx/√3x+2 от 0 до 2
u=x
dv=dx/sin2x
du=dx
v=–ctgx
=(–x·ctgx)|π/3π/4– ∫ π/3π/4(–ctgx)dx=
=–(π/3)·ctg(π/3)+(π/4)ctg(π/4) + ∫ π/3π/4d(sinx)/sinx=
=(π/4)–(π·√3/9) +ln|sinx||π/3π/4=
=(π/4)–(π·√3/9) +ln|sin(π/3)|–ln|sin(π/4)|=
=(π/4)–(π·√3/9) +ln(√3/√2).
8б
Замена
√3x+2=t
3x+2=t2
x=(t2–2)/3
dx=2tdt/3
4x–1=4·(t2–2)/3 – 1= (4t2–11)/3
Меняем пределы интегрирования
x=0 ⇒ t=√3
x=2 ⇒ t=√8
получим
∫ √8√3((4t2–11)/3)·(2tdt/3)·(1/t)=
=(2/9)∫ √8√3(4t2–11)dt=
=(2/9)·(4t3/3)|(√8)_(√3– (22/9)(x)|√8_(√3=
=(8/17)(√8)3–(8/17)(√3)3–(22/9)·(√8–√3)=
=(128√2)/17 – (24√3/17)–(44√2/9) +(22√3/9)
можно привести подобные 1 и 3, 2 и 4