2х3–х2–2х+1=0
х4–4х3+12х–9=0
(2x3–x2)–(2x–1)=0
x2·(2x–1) –1·(2x–1)=0
(2x–1)·(x2–1)=0
2x–1=0 или x2–1=0
x=1/2 или х= ± 1
О т в е т. –1; 1/2; 1
2.
Поступим так же.
(x4–9)–(4x3–12x)=0
(x2–3)·(x2+3)–4x·(x2–3)=0
(x2–3)·(x2+3–4x)=0
x2–3=0 или x2–4x+3=0
x= ± √3 или D=(16)–4·3=4 ⇒ x=(4–2)/2=1; x=(4+2)/2=3
От в е т. –√3; 1; 3; √3