x+7+...
{4–x >0 ⇒ x < 4
{4–x ≠ 1 ⇒ x ≠ 3
{28–3x–x2 > 0 ⇒ x2+3x–28 < 0; D=121; x=–7; x=4 ⇒ –7 < x < 4
x ∈ (–7;3)U(3;4)
Применяем метод рационализации
(4 – х – 1)·(28 – 3x – x2 – 4 + x) ≤ 0
(3–x)·(–x2 –2x+24) ≤ 0
x2+2x–24=0
D=100
x=–6; x=4
(x–3)·(x+6)·(x–4) ≤ 0
Метод интервалов на ОДЗ уравнения:
(–7)_–__ [–6] __+___ (3) __–__ (4)
Решение (1)
(–7;– 6] U (3;4)
(2)
x2–4x=3=(x–1)(x–3)
((x+7)·(x2–4x+3) +14x–24 – 5·(x–3))/((x–1)(x–3)) ≥ 0
(x3–4x2+3x+7x2–28x+21+14x–24–5x+15)/((x–1)(x–3)) ≥ 0
(x3+3x2–16x +12)/((x–1)(x–3)) ≥ 0
x=1 – нуль числителя, так ак 1+3–16=12=0
Выделим (х–1) в числителе:
x3–x2+4x2–4x –12x+12=x2·(x–1)+4x(x–1)–12·(x–1)=
=(x–1)·(x2+4x–12)=(x–1)·(x–2)(x+6)
(x–1)(x–2)(x+6)/((x–1)(x–3)) ≥ 0
(x–2)(x+6)/(x–3) ≥ 0; x ≠ 1
_–__ [–6] ____+____ (1) _+__ [2] __–_3 _+__
решение (2)
[–6;1) U(1;2] U(3;+ ∞)
О т в е т. {–6} U(3;4)