7. ∫ x arcctg 3x dx
x2–5x–3=(x2–2·(5/2)x+(25/4))–(25/4)–3=(x–(5/2))2–(37/4)
Замена
x–(5/2)=t
x=t+(5/2)
dx=dt
2+3x=2+3·(t+(5/2)= 3t+(19/2)
= ∫ (3t+(19/2))dt/(t2–(37/4))=
=(3/2) ∫ d(t2–(37/4))/(t2–(37/4)) +(19/2) ∫ dt/(t2–(37/4))=
=(3/2)ln|t2–(37/4)| +(19/2)·(1/√37)ln|(2t–√37/(2t+√37|+C
=(3/2)ln|x2–5x–3|+(19/(2√37))ln|(2x–5–√37)/(2x–5+√37)|+C
7.
По частям
u=arcctgx
du=–dx/(1+x2)
dv=xdx
x=(x2)/2
=u·v– ∫ vdu= (x2·arcctgx)/2 + (1/2) ∫x2dx/(1+x2) =
=(x2·arcctgx)/2 + (1/2) ∫(x2+1–1)dx/(1+x2) =
=(x2·arcctgx)/2 + (1/2) ∫dx– (1/2) ∫ dx/(1+x2)=
=(x2·arcctgx)/2 + (1/2)x +(1/2) arcctgx + C