log₁₅ x = 1 – log₁₅ 16.
2) log ₂ (6xy) = 2 + log₂ 2,
log₂ (x + y) = 2.
y=8–x
log15x=1–log15y
log15x+log15y=1
log15(xy)=1
xy=15
x·(8–x)=15
x2–8x+15=0
D=64–60=4
x=(8–2)/2=3; y=(8+2)/2=5
Проверка
log2(3+5)=2 – верно
log153+log155=1 верно
log1515=1
О т в е т. 3; 5