Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 33282 ...

Условие

{ 5x + 2 • 2·5–x ≤ 51,
{ log 0,25 ≥ log2 32x – 1.

предмет не задан 591

Решение

(1)
5x=t
t>0
25t+(2/t) ≤ 51
25t2–51t+2 ≤ 0
D=(–51)2–4·25·2=2601–200=2401=492
t=1/25 или t=2
1/25 ≤ 5x ≤ 2
–1 ≤ x ≤ log52

log52 < log42=1/2

(2)
{x>0
{2x ≠ 1 ⇒ x ≠ 1/2
x ∈ (0;1/2) U(1/2;+ ∞ )

log2(0,25)/log2(2x) ≥ log2(25·x) –1;
–2/(1+log2x) ≥5+log2x –1
log2x=u
(u2+5u+6)/(u+1) ≤ 0

_–__ [–3] _+__ [–2] _–__ (–1) _+__

log2x ≤ –3 или –2 ≤ log2x < – 1;

0 < x ≤ 1/8 1/4 ≤ x < 1/2

О т в е т. (0; 1/8) U (1/4; log52]

Обсуждения

Написать комментарий

Меню

Присоединяйся в ВК