19. ∫dx / 1–3cos²x + sin²x
20. ∫cos2x sin3xdx
ctg34x=ctg4x·(ctg24x)=ctg4x·((1/sin2x)–1)
d(ctg4x)=(ctg4x)`dx=(–1/sin24x)·(4x)`=–4dx/sin24x
∫ ctg34xdx= ∫ ctg4x·dx(1/sin2x)– ∫ ctg4x=
=(–1/4) ∫ ctg4x d(ctg4x)– ∫ cos4xdx/sin4x=
=(–1/4)(ctg2(4x))/2–(1/4) ∫ d(sin4x)/sin4x=
(–1/8)ctg2(4x)–(1/4)ln|sin4x|+С
2.
1–3cos2x+sin2x=sin2x+cos2x–3cos2x+sin2x=2sin2x–2cos2x=
= –2·cos2x
∫ dx/(–2cos2x)= ( – 1/4) ∫d(2x)/cos(2x)=
cм. таблицу
= ( –1/4) ln |tg x +(π/4)| + C
3.
Формула
sin α · cos β =(1/2)sin( α + β ) + (1/2) sin ( α – β )
sin 3x · cos 2x = (1/2)sin5x +(1/2) sinx
∫sin3x·cos2x=(1/2) ∫ sin5x dx +(1/2) ∫ sinx dx =
=(1/10)·(–cos5x)+(1/2)·(–cosx) + C