2x=t
t > 0
2x+1=2x·2=2t;
22x+1=22x·2=2t2
23x+1=23x·2=2t2
(t4 –2t3+2t2–2t+1)/((t–2)2+(t–3)3–1) ≥ 0
(t–1)·(t3–t2+t–1)/((t–2)2+(t–3)3–1) ≥ 0
(t–1)·(t–1)·(t2+1)/((t–2)2+(t–3)3–1) ≥ 0
метод интервалов.
Нули числителя t1=t2=1
Нули знаменателя:
(t–2)2+(t–3)3–1=0
t2–4t+4+t3–9t2+27t–27–1=0
t3–8t2+23t–24=0
t3–27 –(8t2–24t)–(t–3)=0
(t–3)·(t2–5t+8)=0
t=3
D=25–4·8<0
(0) _–__ [1] __–___ (3) __+___
t=1 или t > 3
2x=2 или 2x > 3
x=1 или x > log23
О т в е т. {1}U(log23;+ ∞ )