lim x→1 ( (x3 – 3x – 2) / (x4 – 16) ) lim x→0 ( (cos(–3x) – 1) / (sin 9x2) )
1) Подставляем 1 вместо х =(1–3–2)/(1–16)=–4/(–15)=4/15 2. cos(–3x)=cos3x 1–cos3x=2sin2(3x/2) cos(3x)–1=–2sin2(3x/2) limx→0(–2sin2(3x/2))/(sin9x2)=–1/2 limx→0(sin(3x/2))/(3x/2)=1 limx→0(9x2)/(sin9x2)=1