5. Решите систему уравнений
{ (1/25)–y = 5x+1,
{ log3(4y + 6х – 12) = lg log2 1024 + log27 x3.
ОДЗ:
{x>0;
{x ≠ 1
(0;1)U(1;+ ∞ )
так как
logx2=1/log2x;
log2√x=log2x1/2=(1/2)·log2x;
Замена переменной
log2x=t
(1/t)– 1 = 2t;
(2t2+t–1)/t=0
{2t2+t–1=0; D=1+8=9; t1=–1 или t2=1/2
{t ≠ 0
log2x=–1 ⇒ x=2–1; x=1/2
или
log2x=1/2 ⇒ x=21/2; x=√2
О т в е т. 1/2; √2
5.
(5–2)–y=52y
1024=210
log21024=10
log27x3=log33x3=(3/3)log3x;
{52y=5x+1 ⇒ 2y=x+1;
{log3(4y+6x–12)=lg(10) + log3x;
{2y=x+1;
{log3(4y+6x–12)=1 + log3x;
{2y=x+1;
{log3(4y+6x–12)=log33 + log3x ⇒ log3(4y+6x–12)= log3(3·x);
{2y=x+1;
{4y+6x–12=3x;
{2y=x+1;
{4y=–3x+12
2x+2=–3x+12
5x=10
x=2
y=3/2
проверка:
log3(6+1212)=1+log278 – верно
О т в е т. (2;3/2)