✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 327 В бак равномерной струей в единицу

УСЛОВИЕ:

В бак равномерной струей в единицу времени поступает объем воды Vt=2 дм3/с. В дне бака имеется отверстие площади S=2 см2. На каком уровне h будет держаться вода в баке?

Добавил slava191, просмотры: ☺ 2114 ⌚ 06.01.2014. физика 10-11 класс

Решения пользователей

На нашем сайте такое бывает редко, но решение к данной задаче еще никто не написал.

Что Вы можете сделать?

  1. Напишите решение или хотя бы свои догадки первым.
  2. Заказать эту задачу у партнеров сайта: на этой странице.
  3. Найдите похожую задачу. Используйте поиск.
Увы, но свой вариант решения никто не написал... Будь первым!
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
(прикреплено изображение)
✎ к задаче 43566
Область определения (4;+ ∞ )

y`=1/(x-4) - 4

y` = 0

1/(x-4) - 4 =0

(1-4x+16)/(x-4)=0

1-4x+16=0

x=17/4


(4) _ +__ (17/4) __-__


x=17/4 - точка максимума, производная меняет знак с + на -
✎ к задаче 43563
y`=x^2-9

y`=0

x^2-9=0

x= ± 3


_+__ (-3) _-__ (3) _+__


x=-3 - точка максимума

х=3 - точка минимума.

Наиб и наим нет. См график

Есть значения, которые больше чем в точке максимума и меньше чем в точке минимума.

Поэтому можно говорить о наибольшем и наименьшем значении на отрезке. Отрезок не задан
(прикреплено изображение)
✎ к задаче 43560
Линейное неоднородное уравнение второго порядка с постоянными коэффициентами.

Решаем однородное:
y''+36y=0

Составляем характеристическое уравнение:
λ^2+36=0


λ _(1,2)= ± 6i

– корни комплексные

α=0 β=6

Общее решение однородного имеет вид:

y_(одн.)=e^(αx)*(С_(1)*cosβх+C_(2)*sinβx)

В данном случае

y_(одн.)=e^(0)*(С_(1)*cos6x+C_(2)*sin6x)

y_(одн.)=С_(1)*cos6x+C_(2)*sin6x




частное решение неоднородного уравнение находим в виде:
y_(част)=(ax+b)*e^(x)


Находим производную первого, второго порядка

y`_(част)=a*e^(x)+(ax+b)*e^(x)=e^(x)*(ax+a+b)

y``_(част)=e^(x)*(ax+a+b)+e^(x)*(a)=e^(x)*(ax+2a+b)


подставляем в данное уравнение:

e^(x)*(ax+2a+b)+36*(ax+b)*e^(x) = x e^(x)

сокращаем на e^(x)
ax+2a+b+ax+b=x

2a=1 ⇒ a=1/2

2a+2b=0 ⇒ a=-b ⇒ b=-a=-1/2

y_(част)=((1/2)x-(1/2))*e^(x)

О т в е т.
y=y_(одн)+y_(част)=С_(1)*cos6x+C_(2)*sin6x+((1/2)x-(1/2))*e^(x)



✎ к задаче 43561
y`=6*(-sinx)+3sqrt(3)

y`=0

6*(-sinx)+3sqrt(3)=0

sinx=sqrt(3)/2

x=(-1)^(k)*(π/3)+πk, k ∈ Z

отрезку [0;π/2] принадлежит x= (π/3)

[0] __+__ (π/3) __-_ [π/2]

х=π/3 - точка максимума, значит в этой точке наибольшее значение на отрезке

О т в е т. y(π/3)= 6*cos(π/3)+3sqrt(3)*(π/3)-sqrt(3)*π+8=6*(1/2)+8=[b]11[/b]
✎ к задаче 43562