1) по формуле Муавра;
2) в алгебраической форме.
7.1. [m] - (\sqrt{3} + i)^{5} [/m].
cos φ =–√3/2
sin φ =1/2
φ =(5π/6)
–√3+i = 2·(cos(5π/6) + i sin (5π/6))
(–√3+i)5= 25·(cos5·(5π/6) + i sin 5·((5π/6) )=
=32·(cos(25π/6) +isin(25π/6))=
=32·(cos(4 π+(π/6))+ i sin (4π+(π/6))=
=32·(cos(π/6)+ i sin (π/6))=(32·√3/2)+i·(1/2)= 16 √3 +16·i