2.1 y = sin 2x, x₀ = π/4;
2.2 √x − √y = √a, x₀ = 4a;
2.3 { x = e^−3t, y = e8t, t₀ = 1.
y`=(cos2x)·(2x)`=2cos2x
y`(π/4)=2cos(π/2)=2·0=0
2.2
(√x–√y)`=(√a)`
1/(2√x) – (1/2√y)·y`=0
y`=√y/√x
xo=4a ⇒ √4a–√yo=√a
yo=a
y`(xo;yo)=√a/√4a=1/2
2.3
{x`t=–3e–3t
{y`t=8e8t
y`x=y`t/x`t=8e8t/(–3e–3t)=–(8/3)e11t
y`x(1)=(–8/3)e11