Задание 4. Привести к виду [m] R \sin(\omega t + \theta) [/m] выражения: [m] 1) 12 \sin 2t + 5 \cos 2t; [/m]
[m] 2) 8 \sin \left( 5x + \frac{\pi}{6} \right) - 15 \cos \left( 5x + \frac{\pi}{6} \right) [/m].
Задание 5. Найти амплитуду и начальную фазу сумм следующих колебаний: [m] 1) y_1 = 3 \sin \frac{t}{2} [/m] и [m] y_2 = 5 \sin \frac{t}{2}; [/m]
[m] 2) y_1 = 2 \sin 2t [/m] и [m] y_2 = 2 \sin \left( 2t + \frac{\pi}{3} \right); [/m]
[m] 3) y_1 = \sqrt{2} \sin 5t [/m] и [m] y_2 = \sqrt{2} \cos 5t [/m].
F(t)=m·a(t)
a(t)=v`(t)=(s`(t))`
s`(t)=(5π/3)·cos((π/3)t+(π/6))
a(t)=(5π2/9)·(–sin((π/3)t+(π/6)));
a(t)=(–5π2/9)sin((π/3)t+(π/6))
F(0)=m·(5π2/9)·(–sin((π/3)·0+(π/6)))= –5π2m/18
4.
1)12sin2t+5cos2t=13·((12/13)·sin2t+(5/13)cos2t)=
=13·(sin θ sin2t+cos θ cos2t)=13·cos(2t–θ )
sin θ =12/13; cos θ =5/13
2)8·sin(5x+(π/6))–15cos(5x+(π/6))=17·((8/17)·sin(5x+(π/6))–(15/17)·cos(5x+(π/6)))=17·(sin θ sin(5x+(π/6))–cosθ·cos(5x+(π/6)))
= – 17·cos(5x+(π/6)+θ)
sin θ =8/17; cos θ =15/17
5.
1)
y=y1+y2=3sin(t/2)+5sin(t/2)=8sin(t/2)=8·cos((π/2)–(t/2))=
=8·cos((t/2)–(π/2))
A=8 – амплитуда
θ= –π/2 – начальная фаза
2)
y=y1+y2=2·sin2t+2sin(2t+(π/3))=2·(sin2t+sin(2t+(π/3))=
=2·2sin((2t+2t+(π/3))/2)·cos((2t–2t–(π/3))/2)=
=4sin(2t+(π/6))·cos(–π/6)=
=2√3·sin((2t+(π/6))=
=2√3cos((π/2)–(2t+(π/6)))=
=2√3cos((π/2)–2t–(π/6))=
=2√3cos((2π/6)–2t)=
=2√3cos(2t – (π/3))
A=2√3 – амплитуда
θ= –π/3 – начальная фаза
3)
y=y1+y2=2√5sin5t+√2cos5t=
=√22·((2√5/√22)·sin5t+(√2/√22·cos5t)=
=√22·(sin θ·sin5t+cosθ·cos5t)=
=√22·cos(5t–θ)
A=√22 – амплитуда
θ= – начальная фаза
sin θ =2√5/22; cos θ =√2/22
Применяли метод введения вспомогательного угла
(см. приложения)
и формулы тригонометрии
cos( α + β )=
cos ( α – β )=
формулы приведения
sin γ =cos((π/2)– γ )