12/(n2–4n+3)= A/(n–1) + B/(n–3)
12=А·(n–3) + B·(n–1)
A+B=0
–3A–B=12
B=6;
A=–6
Тогда
a4=(–6/3)+(6/1)
a5=(–6/4)+(6/2)
a6=(–6/5)+(6/3
а7=(–6/6)+(6/4)
а8=(–6/7)+(6/5)
...
an=–6/(n–1) + 6/(n–3)
Складываем
Sn=(6/1) +( 6/2)+ (–6/(n–2))–6/(n–1)–6/(n)
S=limn→ ∞ Sn=9
О т в е т. 9