[так как d(2xy)=2ydx, то ∫y*sin2xy dx= (1/2) ∫ sin(2xy)d(2xy)=
=(1/2)*(-cos(2xy))]
=∫^(3π/2)_(π/2)( (1/2)*(-cos(2xy)))|^(x=3) _(x=1/2)dy=
=(-1/2)*∫^(3π/2)_(π/2)(cos2*3y-cos2*(1/2)y)dy=
=(-1/2)* ∫^(3π/2)_(π/2)(cos6y-cosy)dy=
=(-1/2)*((1/6)sin6y-siny)|^(3π/2)_(π/2)=
=(-1/2)*(1/6)sin6*(3π/2)-(-1/2)*(1/6)sin6*(π/2) + (1/2)sin(3π/2)-(1/2)sin(π/2)=
= (-1/12)*sin9π+(1/12)sin3π+(1/2)sin(3π/2)-(1/2)sin(π/2)=
=0+0+(1/2)*(-1)-(1/2)*1= -1