limx → ∞ ((1–x)/(2–x))3–x
(1–x)/(2–x)=((2–x)–1)/(2–x)=(2–x)/(2–x) –(1/(2–x))=1+(1/(x–2)). limx→ ∞ (1 + (1/(x–2)))x–2=e limx→ ∞ ((1–x)/(2–x))3–x= =limx→ ∞ ((1 + (1/(x–2)))x–2)(3–x)/(2–x)=elimx→ ∞ (3–x)/(2–x)=e–1 О т в е т. 1/e