cosx > 0 ⇒ x ∈ ((–π/2)+2πn; (π/2)+2πn), n ∈ Z ( 1 и 4 четверти)
log4cosx=log22(cosx)=(1/2)log2cosx
log24cosx=(1/4)log22 cosx
5(log2cosx)2+4log2cosx – 1 ≤ 0
D=16–4·5·(–1)=36
корни – 1 и 1/5
(5log2cosx –1)·(log2cosx+1) ≤ 0
–1 ≤ log2 cosx ≤ 1/5
log2(1/2) ≤ log2 cosx ≤ log2 21/5 ⇒
(1/2) ≤ cosx≤ 21/5
⇒
(1/2) ≤ cosx
(–π/3)+2πm ≤ x ≤ (π/3)+2πm, m ∈ Z
о т в е т.
(–π/3)+2πm ≤ x ≤ (π/3)+2πm, m ∈ Z