Найти общее решение уравнения y'*x+y=-x*y2 Это уравнение Бернулли при n=1. Разделив обе части уравнения на y получаем: x*y'/y+x*y2/y=-1 Делаем замену: z=1/y0 Тогда z' = 0 и поэтому уравнение переписывается в виде x*y-zy2=-1 Решаем это уравнение методом вариации произвольной постоянной. Это однородное уравнение. Представим его в виде: z'=-1 или -1 dz = 1 dx Интегрируя, получаем: ∫ -1dz= ∫ 1dx -z = x+C Поскольку z=1/y0, то получим: 1/y°