(1/2)·sin(4x–10x)+(1/2)·sin(4x+10x)=(1/2)·sin(x–7x)+(1/2)sin(x+7x)
(1/2)·sin(–6x)+(1/2)·sin(14x)=(1/2)·sin(–6x)+(1/2)sin(8x)
sin14x=sin8x
sin14x–sin8x=0
2·sin((14x–8x)/2)·cos((14x+8x)/2)=0
sin3x=0 или cos11x=0
3x=πk, k ∈ Z или 11x=(π/2)+πn, n ∈ Z
x=(π/3)k, k ∈ Z или x=(π/22)+(π/11)n, n ∈ Z
О т в е т. (π/3)k, (π/22)+(π/11)n, k, n ∈ Z