✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 29001 8. Из цифр 1, 2, 3, 4, 5 сначала

УСЛОВИЕ:

8. Из цифр 1, 2, 3, 4, 5 сначала выбирается одна, а затем из оставшихся четырех — вторая цифра. Предполагается, что все 20 возможных исходов равновероятны. Найти вероятность того, что будет выбрана нечетная цифра: а) в первый раз; б) во второй раз; в) в оба раза.

РЕШЕНИЕ ОТ SOVA ✪ ЛУЧШЕЕ РЕШЕНИЕ

а) Всего пять цифр, нечетных три.
p=3/5=0,6

б) Первый раз выбрана четная цифра.
Всего цифр пять, четных 2, вероятность выбора первой четной цифры равна (2/5).
Из оставшихся четырех цифр, три нечетные, вероятность выбора нечетной цифры равна (3/4)
По правилу умножения вероятностей получаем ответ

p= (2/5)*(3/4)=6/20=0,3

в)
p=(3/5)*(2/4)=6/20=0,3

О т в е т. а) 0,6; б) 0,3; в) 0,3

Вопрос к решению?
Нашли ошибку?

Добавил slava191, просмотры: ☺ 429 ⌚ 18.07.2018. математика 1k класс

Решения пользователелей

Хочешь предложить свое решение? Войди и сделай это!
Лучший ответ к заданию выводится как основной

Написать комментарий

Последнии решения
(прикреплено изображение) [удалить]
✎ к задаче 31802
(прикреплено изображение) [удалить]
✎ к задаче 31803

y=2x + 8 - прямая || прямой у=2х
Найдем точки пересечения y=2x + 8 c гиперболой
{у=2х+8
{x^2-2y^2=1

x^2-2*(2x+8)^2=1
x^2-8x^2-64x-128=1
7x^2+64x+129=0

D=64^2-4*7*129=484

x=(-64 ± 22)/14

x_(1)=-43/7 или x_(2)=-3
y_(1)= или y_(2)=

B(x_(1);y_(1))
A(x_(2);y_(2))

Найти координаты точки М - середины АВ

y=2x -4 - прямая || прямой у=2х
Найдем точки пересечения y=2x -8 c гиперболой
{у=2х-4
{x^2-2y^2=1

x^2-2*(2x-4)^2=1
x^2-8x^2+32x-32=1
7x^2-32x+33=0

D=32^2-4*7*33=100

x=(32 ± 10)/14

x_(3)=11/7 или x_(4)=3
y_(3)= или y_(4)=

D(x_(3);y_(3))
C(x_(4);y_(4))

Найти координаты точки N - середины CD

(прикреплено изображение) [удалить]
✎ к задаче 31791
(n+1)!=n!*(n+1)
(n+2)!=n!*(n+1)*(n+2)

Выносим n! в числителе за скобки и сокращаем с n! в знаменателе.

lim_(n→ ∞ )(n+1-3)/(n+1))n+2)=lim_(n→ ∞ )(n-2)/(n+1))n+2)=0
[удалить]
✎ к задаче 31800
Составим уравнение плоскости ДКЕ.
Пусть M(x;y;z) - произвольная точка плоскости.
Тогда векторы vector{MД}; vector{EД}; vector{KД} [b] компланарны[/b].
Условием компланарности трех векторов является равенство 0 определителя третьего порядка, составленного из координат этих векторов ( см. приложение 1)

vector{n_(пл.ДКЕ)}=(135;349;-450)

Составим уравнение плоскости, проходящей через А и В , параллельно vector{n_(пл.ДКЕ)}

Пусть N(x;y;z) - произвольная точка плоскости.
Тогда векторы vector{NA}; vector{NB}; vector{n} [b] компланарны[/b].
Условием компланарности трех векторов является равенство 0 определителя третьего порядка, составленного из координат этих векторов ( см. приложение 2)
(прикреплено изображение) [удалить]
✎ к задаче 31794