✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 28927 4.3.81) Найти расстояние между точками

УСЛОВИЕ:

4.3.81) Найти расстояние между точками пересечения асимптот гиперболы
9х^2-16у^2 = 144 с окружностью, имеющей центр в правом фокусе гиперболы и проходящей через начало координат.

РЕШЕНИЕ ОТ SOVA ✪ ЛУЧШЕЕ РЕШЕНИЕ

Канонический вид гиперболы:
(x^2/a^2)-(y^2/b^2)=1

[b] Уравнения асимптот гиперболы имеют вид:[/b]

[b]y=(±b/a)x[/b]

[b]Фокусы гиперболы имеют координаты
F_(1)(-с;0) и F_(2)(с;0)
b^2=c^2-a^2[/b]


Разделим обе части уравнения на 144:
(9x^2/144)-(16у^2/144)=1
Канонический вид гиперболы:
(x^2/16)-(y^2/9)=1
a^2=16
b^2=9
Тогда
[b] уравнения асимптот гиперболы

y=(±3/4)x[/b]

c^2=b^2+a^2=9+16=25
[b]Фокусы гиперболы имеют координаты
F_(1)(-5;0) и F_(2)(5;0) [/b]

OF_(2)=5
R=OF_(2)=5

Уравнение окружности с центром в точке
F_(2) (5;0) и радиусом R=5 имеет вид

(x-5)^2+(y-0)^2=25;
(x-5)^2+y^2=25

Чтобы найти точки пересечения гиперболы
асимптоты y=(-3/4)x
и
окружности
(x-5)^2+y^2=25
решим систему уравнений:

{y=(-3/4)x
{(x-5)^2+y^2=25

Подставим y=(-3/4)x во второе уравнение
(х-5)^2+((-3/4)x)^2 = 25;

Упрощаем
x^2-10x+25+(9/16)x^2=25
(25/16)x^2-10x=0
x*((5/16)x-2)=0
x_(1)=0 или x_(2)=(32)/5=6,4
y_(1)= (-3/4)*(6,4)=-4,8

Итак, асимптота y=(-3/4)x пересекается с окружностью
(х-5)^2+y^2=25 в точках
O(0;0) и А(6,4; - 4,8)
Аналогично, асимптота y=(3/4)x пересекается с окружностью (х-5)^2+y^2=25 в точках
O(0;0) и B(6,4; + 4,8)

ОА=ОВ=sqrt(6,4^2+4,8^2)=sqrt(40,96+23,04)=sqrt(64)=8
AB=2*4,8=9,6

О т в е т. 8; 9,6

Вопрос к решению?
Нашли ошибку?

Добавил slava191, просмотры: ☺ 723 ⌚ 15.07.2018. математика 10-11 класс

Решения пользователей

Лучший ответ к заданию выводится как основной
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
(прикреплено изображение)
✎ к задаче 40831
Уравнение прямой имеет вид:
y=kx+b

Подставляем координаты точки А(–6;–8):
-8=k*(-6)+b
Подставляем координаты точки В(–1;–7):
-7=k*(-1)+b

Решаем систему двух уравнений:
{-8=k*(-6)+b
{-7=k*(-1)+b

Вычитаем из первого уравнения второе:
{-1=-5k ⇒ k=\frac{1}{5}
{-7=k*(-1)+b

b=-k+7=-\frac{1}{5}+7=-\frac{34}{5}

О т в е т. y=\frac{1}{5}x-\frac{34}{5 или 5y=x-34 ⇒ x-5y-34=0

✎ к задаче 40842
Уравнение прямой имеет вид:
y=kx+b

Подставляем координаты точки А(4;4):
4=k*4+b
Подставляем координаты точки В(2;1):
1=k*2+b

Решаем систему двух уравнений:
{4=k*4+b
{1=k*2+b

Вычитаем из первого уравнения второе:
{3=k*2 ⇒ k=\frac{3}{2}
{1=k*2+b
b=1-2k=1-3=-2

О т в е т. y=\frac{3}{2}x-2 или 2y=3x-4 ⇒ 3x-2y-4=0

✎ к задаче 40845
(прикреплено изображение)
✎ к задаче 40845
(прикреплено изображение)
✎ к задаче 40844