✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 28643 Помогите пожалуйста

УСЛОВИЕ:

Помогите пожалуйста

Добавил u1881626489, просмотры: ☺ 45 ⌚ 24.06.2018. математика 10-11 класс

Решения пользователелей

Хочешь предложить свое решение? Войди и сделай это!

РЕШЕНИЕ ОТ SOVA

1.
3=7^(log_(7)3)

7^((x-1)*log_(8)3)=7^(log_(7)3)

Степени равны, основания равны, приравниваем показатели
(x-1)*log_(8)3=log_(7)3
х-1=log_(7)3/log_(8)(3)

Применяем формулу перехода к другому основанию
Переходим справа к сонованию3
х-1=log_(3)8/log_(3)7

х-1=log_(7)8
x=1+log_(7)8
x=log_(7)7+log_(7)8
x=log_(7)7*8
x=log_(7)56

2. см. 4

3.

замена переменной
3^x=t
3^(2x)=t^2
t^2+2t-3=0
D=2^2-4*(-3)=16
t=1 или t=-3

3^x=1 ⇒ x=0
3^(x)=-3 - уравнение не имеет корней, 3^(x) > 0 при любом х
О т в е т. 0

4.
замена переменной
5^x=t
25^(x)=t^2
t^2-4t-5=0
D=(-4)^2-4*(-5)=16+20=36
t= - 1 или t=5

5^(x)=-1 - уравнение не имеет корней, 5^(x) > 0 при любом х
5^x=5 ⇒ x=1
О т в е т. 1

5.
ОДЗ:
{-x+6 > 0 ⇒ x < 6
{x+6 > 0 ⇒ x > -6
ОДЗ=(-6;6)
Сумму логарифмов заменим логарифмом произведения
log_(5)(-x+6)*(x+6) > log_(5)11
Логарифмическая функция с основанием 5 возрастает, поэтому
(-х+6)*(х+6) > 11
36-x^2 > 11
25-x^2 > 0
-5 < x < 5
С учетом ОДЗ получаем
О т в е т. (-5;5)

6.
ОДЗ:
{x+2 > 0 ⇒ x > -2
{-x+2 > 0 ⇒ x < 2
ОДЗ=(-2;2)
Сумму логарифмов заменим логарифмом произведения
log_(1/10)(x+6)*(-x+2) < log_(1/10)5
Логарифмическая функция с основанием (1/10) убывает, поэтому
(х+2)*(-х+2) > 5
4-x^2 > 5
-1-x^2 > 0
1+x^2 < 0
нет таких х

О т в е т. нет решений

Вопрос к решению?
Нашли ошибку?

Написать комментарий

Последнии решения
(прикреплено изображение) [удалить]
✎ к задаче 29797
Так как тело двигается равномерно F - F_(тр) = 0
F = F_(тр) = 20 Н

Если к телу приложена сила 25 Н (и оно движется также равномерно), то F тр = 25 Н
[удалить]
✎ к задаче 29793
S = 2*4 = 8 [удалить]
✎ к задаче 29792
S = (1/2)*3*4 = 6 [удалить]
✎ к задаче 29791
-3p-(8a-3p) = -3p-8a+3p = 3p-3p-8a = -8a

Ответ -8a
[удалить]
✎ к задаче 29794