✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 28643 Помогите пожалуйста

УСЛОВИЕ:

Помогите пожалуйста

Добавил u1881626489, просмотры: ☺ 61 ⌚ 24.06.2018. математика 10-11 класс

Решения пользователелей

Хочешь предложить свое решение? Войди и сделай это!

РЕШЕНИЕ ОТ SOVA

1.
3=7^(log_(7)3)

7^((x-1)*log_(8)3)=7^(log_(7)3)

Степени равны, основания равны, приравниваем показатели
(x-1)*log_(8)3=log_(7)3
х-1=log_(7)3/log_(8)(3)

Применяем формулу перехода к другому основанию
Переходим справа к сонованию3
х-1=log_(3)8/log_(3)7

х-1=log_(7)8
x=1+log_(7)8
x=log_(7)7+log_(7)8
x=log_(7)7*8
x=log_(7)56

2. см. 4

3.

замена переменной
3^x=t
3^(2x)=t^2
t^2+2t-3=0
D=2^2-4*(-3)=16
t=1 или t=-3

3^x=1 ⇒ x=0
3^(x)=-3 - уравнение не имеет корней, 3^(x) > 0 при любом х
О т в е т. 0

4.
замена переменной
5^x=t
25^(x)=t^2
t^2-4t-5=0
D=(-4)^2-4*(-5)=16+20=36
t= - 1 или t=5

5^(x)=-1 - уравнение не имеет корней, 5^(x) > 0 при любом х
5^x=5 ⇒ x=1
О т в е т. 1

5.
ОДЗ:
{-x+6 > 0 ⇒ x < 6
{x+6 > 0 ⇒ x > -6
ОДЗ=(-6;6)
Сумму логарифмов заменим логарифмом произведения
log_(5)(-x+6)*(x+6) > log_(5)11
Логарифмическая функция с основанием 5 возрастает, поэтому
(-х+6)*(х+6) > 11
36-x^2 > 11
25-x^2 > 0
-5 < x < 5
С учетом ОДЗ получаем
О т в е т. (-5;5)

6.
ОДЗ:
{x+2 > 0 ⇒ x > -2
{-x+2 > 0 ⇒ x < 2
ОДЗ=(-2;2)
Сумму логарифмов заменим логарифмом произведения
log_(1/10)(x+6)*(-x+2) < log_(1/10)5
Логарифмическая функция с основанием (1/10) убывает, поэтому
(х+2)*(-х+2) > 5
4-x^2 > 5
-1-x^2 > 0
1+x^2 < 0
нет таких х

О т в е т. нет решений

Вопрос к решению?
Нашли ошибку?

Написать комментарий

Последнии решения
cos(x-(5π/2)=cos((5π/2)-x)= sinx;

4sin^3x=sinx

4sin^3x-sinx=0

sinx*(4sin^2x-1)=0

sinx=0 ⇒ x=πk, k ∈ Z
или
sin^2x=1/4 ⇒ sinx=-1/2 или sinx =1/2
x= ± (π/6)+πn, n ∈ Z

О т в е т. а)πk, k ∈ Z ; ± (π/6)+πn, n ∈ Z

б) - (π/6)+2π=11π/6; 2π; (π/6)+2π=13π/6.
[удалить]
✎ к задаче 31986
a_(n)=n!/(2n-1)!!
a_(n+1)=(n+1)!/(2n+1)!!

(2n+1)!!=1*3*5*...*(2n-1)*(2n+1)=(2n-1)!! *(2n+1)

(n+1)!=n!8(n+1)

Признак Даламбера

lim_(n→∞)(a_(n+1))/(a_(n))=lim_(n→∞)(n+1)/(2n+1)=1/2 < 1
По признаку Даламбера сходится.
[удалить]
✎ к задаче 31985
(прикреплено изображение) [удалить]
✎ к задаче 31913
х=8+ 4 целых (1/5)

х=12 целых (1/5)



х=13 целых (5/6) - 12 целых (3/4)

х=13 целых (10/12) - 12 целых (9/12)

х=1 целая (1/12)




x=13 целых (1/7) - 10 целых (3/5)

х=12 целых (8/7)-10 целых (3/5)

х=12 целых (40/35)-10 целых (21/35)

х=2 целых 19/35



х=10 целых (1/4) - (15/16)

х=9 целых (20/16) - (15/16)

х=9 целых (5/16)
[удалить]
✎ к задаче 31981
1) неверно.
2) верно
3) верно
4) неверно
О т в е т. 14
[удалить]
✎ к задаче 31982