✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 27867 4.2.78) Составить уравнение прямой,

УСЛОВИЕ:

4.2.78) Составить уравнение прямой, симметричной прямой x+2y-6 = 0 относительно точки А(4; 2).

РЕШЕНИЕ ОТ SOVA ✪ ЛУЧШЕЕ РЕШЕНИЕ

1 способ
Прямая, симметричная данной, параллельна данной.
Значит ее уравнение имеет вид
x+2y- d=0
Чтобы найти d подставим координаты точки, принадлежащей этой прямой, например точки Е.
Для этого выберем точку F(2;2), принадлежащую данной прямой и найдем координаты точки Е симметричной относительно А
Е(6;2)
6+2*2-d=0
d=10

2 способ
Составим уравнение прямой, перпендикулярной данной и проходящей через точку А
vector{n}_(данной прямой)=(1;2)
vector{n}_(перпендикулярной прямой)=(2;-1)
Скалярное произведение этих векторов равно 0, векторы ортогональны.
2х-у+с=0
Чтобы найти c подставляем координаты точки А
2*4-2=с
с=-6
2х - у - 6 = 0

Найдем расстояние от точки А до данной прямой
d=|4+2*2-6|/sqrt(1+2^2)=2/sqrt(5)

Составим уравнение окружности с центром в точке А и радиусом R=2/sqrt(5).
Эта окружность касается данной прямой и второй прямой, параллельной данной и находящейся на расстоянии 2/sqrt(5) от точки.
(x-4)^2+(y-2)^2=4/5

Решаем систему уравнений
{(x - 4)^2 + (y - 2)^2 = 4/5
{2x - y - 6 = 0 ⇒ y = 2x - 6

(x-4)^2+(2x-6-2)^2=4/5
(x-4)^2=4/25
x-4=2/5 или х-4=-2/5
х=4,4 или х=3,6 - абсцисса точки М
у=2х-6=2*4,4-6=2,8
N(4,4; 2,8)

Прямая, параллельная данной имеет вид
х + 2y - d = 0
Чтобы найти d подставим координаты точки N
4,4+2*2,8 - d=0

d=10

О т в е т. х+2y -10 =0

Вопрос к решению?
Нашли ошибку?

Добавил slava191, просмотры: ☺ 3630 ⌚ 22.05.2018. математика 10-11 класс

Решения пользователей

РЕШЕНИЕ ОТ u821511235

Вопрос к решению?
Нашли ошибку?
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
2,4
✎ к задаче 50946
(прикреплено изображение)
✎ к задаче 52164
В правильном шестиугольнике АС ⊥ FA
FA- проекция F_(1)A ⇒ ⇒

F_(1)A=sqrt(1^2+1^2)=sqrt(2)
(прикреплено изображение)
✎ к задаче 52167
Решаем способом подстановки:
{y=\frac{2x+a}{3}
{|x^2-x-6|=(\frac{2x+a}{3}-1)^2+x-7;

Решаем второе уравнение:

|x^2-x-6|=(\frac{2x+a}{3})^2-2*(\frac{2x+a}{3})+1+x-7;

|x^2-x-6|=\frac{4x^2+(4a-3)x+a^2-6a-54}{9}

Рассматриваем два случая

1)
x^2-x-6 ≥0 ⇒ |x^2-x-6|=x^2-x-6

x^2-x-6=\frac{4x^2+(4a-3)x+a^2-6a-54}{9}

5x^2-(4a+6)*x-a^2+6a=0

D=(4a+6)^2-20(-a^2+6a)=36(a-1)^2 ≥ 0

x_(1,2)=\frac{4a+6 ± 6(a-1)}{10}

при a=1;

x=1 не удовл условию x^2-x-6 ≥ 0

при a ≠ 1
x_(1)=\frac{4a+6 -6(a-1)}{10};x_(2)=\frac{4a+6 +6(a-1)}{10};

x_(1)=\frac{6 -a)}{5};x_(2)=a;

Корни должны удовлетворять условию x^2-x-6 ≥ 0


{{a^2-a-6 ≥ 0 ⇒ a ≤ -2 или a ≥ 3
{(\frac{6 -a)}{5})^2-\frac{(6 -a)}{5}-6 ≥ 0 ⇒ a^2-7a-144 ≥ 0 ⇒ a ≤ -9;a ≥ 16
О т в е т случай 1)
[b]a ≤ -9 или a ≥ 16[/b]


2)
x^2-x-6 < 0 ⇒ |x^2-x-6|=-x^2+x+6

-x^2+x+6=\frac{4x^2+(4a-3)x+a^2-6a-54}{9}

13x^2+(4a-12)x+a^2-6a-108=0

D=(4a-12)^2-52(a^2-6a-108)=-36a^2+216a+5760=-36*(a^2-6a-160)

D ≥ 0 ⇒ a^2-6a-160 ≤ 0 ⇒ a_(1)=-5; a_(2)=16 ⇒ -5 ≤ a ≤ 16

При этом корни:
x_(3)=\frac{-4a+12 -6\sqrt{-a^2+6a+160}}{26};x_(2)=\frac{-4a+12 +6\sqrt{-a^2+6a+160}}{26};

должны удовлетворять условию x^2-x-6 < 0


Cм графическое решение:

О т в е т. (- ∞ ;-9)U(-9;-2] U[3;+ ∞ )
(прикреплено изображение)
✎ к задаче 52162
(прикреплено изображение)
✎ к задаче 52163