20·(1–cos2x)+9cosx–21 < 0
–20 cos2x+9cosx–1 < 0
20cos2x–9cosx+1 > 0
D=81–4·20=1
cosx < 1/5 или cosx > 1/4
cosx < 1/5
arccos(1/5)+2π < x < 2π–arccos(1/5)+2πn=–arccos(1/5)+2π(n+1), n ∈ Z
или
cosx > 1/4
–arccos(1/4)+2πm < x < arccos(1/4)+2πm, m ∈ Z
О т в е т.
–arccos(1/4)+2πm < x < arccos(1/4)+2πm, m ∈ Z
arccos(1/5)+2π < x < 2π–arccos(1/5)+2πn=–arccos(1/5)+2π(n+1), n ∈ Z