Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 26841 ...

Условие

5 log2(x – 6 + 6 / (x – 1)) ≤ log√(2)(3 / (x – 4) – 2 / (x – 3)) + 7.

математика 10-11 класс 600

Все решения


ОДЗ:
{(x2–7x+12)/(x–1) > 0

(1;3) U (4;+ ∞)


Так как
log2y=1/(1/2)log2y=2log2y
y > 0

5log2(x–6+(6/(x–1))=5log2(x2–7x+12)/(x–1)


2log2(3/(x–4)–(2/(x–3))=2log2(x–1)/(x2–7x+12)


5log2(x2–7x+12)/(x–1) ≤ 2log2(x–1)/(x2–7x+12) + 7

5log2(x–3)+5log2(x–4)–5log2(x–1)≤ 2log2(x–1)–2log2(x–3)–2log2(x–3) +7

7log2(x–4)(x–3)/(x–1) ≤ 7

log2(x–4)(x–3)/(x–1) ≤ 1

(x–4)(x–3)/(x–1) ≤ 2

(x2–7x+12–2x+2))/(x–1) ≤ 0

(x2–9x+14)/(x–1) ≤ 0

(x–2)(x–7)/(x–1) ≤ 0

_–__ (1) ____ (2) _____–_____ (7) __________

С учетом ОДЗ получаем ответ.
(4;7)

Обсуждения

Написать комментарий

Меню

Присоединяйся в ВК