n₂ y₂' = y₁' + xy/x₂
n₃ y' + xy = e^–῾x
y`=dy/dx
lnydy/y=xdx
∫ lnydy/y=∫xdx
∫lnyd(lny)= =∫xdx
ln2(y)/2=x2/2+c
ln2y=x2+C, C=2c
2) y=ux
y`=u`x+u
u`x+u=(u2x2+x2u)/x2
u`x+u=u2+u
u`x=u2
u`=du/dx
du/u2=dx/x
∫du/u2= ∫dx/x
–1/u=ln|x|+lnC
–1/u=lnCx
u=y/x
–x/y=lnCx
y=–x/lnCx