OA=2
OB=4
∠ AOB=Pi/3=60^(o)
По теореме косинусов
АВ^2=OA^2+OB^2-2*OA*OB*cos ∠ AOB=
=2^2+4^2-2*2*4*(1/2)=12
AB=2sqrt(3)
S( Δ AOB)= (1/2)OA*OB*sin ∠ AOB=(1/2)*2*4*sin 60^(o)=
=2sqrt(3)
p= (OA+OB+AB)/2=(2+4+2sqrt(3))/2=3+sqrt(3)
r=S/p=2sqrt(3)/(3+sqrt(3))=2sqrt(3)*/sqrt(3)*(sqrt(3)+1)=2/(sqrt(3)+1)
или
r=2*(sqrt(3)-1)/((sqrt(3))^2-1)=sqrt(3)-1
О т в е т. r=2/(sqrt(3)+1)=sqrt(3)-1