ЗАДАЧА 263 Шарик, подвешенный на нити, имеющей

УСЛОВИЕ:

Шарик, подвешенный на нити, имеющей длину I, описывает окружность в горизонтальной плоскости. Нить составляет с вертикалью угол а. Найти период T обращения шарика, если маятник находится в лифте, движущемся с постоянным ускорением a<g, направленным вниз.

РЕШЕНИЕ ОТ IlyaSerebryakov:

На шарик действуют две силы: тяжести mg и натяжения нити N. Спроецируем II закон Ньютона на оси OX и OY. Получим систему двух уравнений:(1) maц=Nsin(альфа), где mц - центростремительное ускорение; (2) ma=mg-Ncos(альфа), где а - ускорение лифта (шарик движется по вертикали с таким же ускорением) -->(2) m(g-a)=Ncos(альфа). Поделим (1) на (2): (3) aц=(g-a)tg(альфа). Но (4) aц = v2/R, где v2 - квадрат линейной скорости обращения шарика, а R - радиус, описываемого им круга.
(5) Т=2пR/v, где Т- искомый период обращения шарика, п=3,14 и v - лин. скорость шара. (6) R=lsin(альфа), где l - длина нити. Собрав вместе формулы (3,4,5,6) окончательно получаем Т=2п*КОРЕНЬ(lcos(альфа)/(g-a))
ВОПРОСЫ ПО РЕШЕНИЮ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

Нужна помощь?

Опубликовать

Добавил slava191 , просмотры: ☺ 1750 ⌚ 05.01.2014. физика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.
Лучший ответ к заданию выводится как основной

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

u1452559144 ✎ y=10корень x к задаче 19589

Dima6372919237 ✎ Приблизительно -16 к задаче 19683

u3117387117 ✎ 1 к задаче 18621

slava191 ✎ Удобно решать используя формулу рационализации: log(x)(x-1) -1 < 0 (x-1)(1-x-x) < 0 (X-1)(1-2x) < 0 -(x-1)(2x-1) < 0 Перекосим минус вправо, меняется знак неравенства (X-1)(2x-1) > 0 (-бесконечность; 1/2) U (1; +бесконечность) к задаче 19672

slava191 ✎ 4/9 - 51/8 + 6,375 32/72 - 459/72 + 6,375 = -427/72 +6375/100 = 0,444 к задаче 19647