✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 263 Шарик, подвешенный на нити, имеющей

УСЛОВИЕ:

Шарик, подвешенный на нити, имеющей длину I, описывает окружность в горизонтальной плоскости. Нить составляет с вертикалью угол а. Найти период T обращения шарика, если маятник находится в лифте, движущемся с постоянным ускорением a<g, направленным вниз.

РЕШЕНИЕ ОТ IlyaSerebryakov ✪ ЛУЧШЕЕ РЕШЕНИЕ

На шарик действуют две силы: тяжести mg и натяжения нити N. Спроецируем II закон Ньютона на оси OX и OY. Получим систему двух уравнений:(1) maц=Nsin(альфа), где mц - центростремительное ускорение; (2) ma=mg-Ncos(альфа), где а - ускорение лифта (шарик движется по вертикали с таким же ускорением) -->(2) m(g-a)=Ncos(альфа). Поделим (1) на (2): (3) aц=(g-a)tg(альфа). Но (4) aц = v2/R, где v2 - квадрат линейной скорости обращения шарика, а R - радиус, описываемого им круга.
(5) Т=2пR/v, где Т- искомый период обращения шарика, п=3,14 и v - лин. скорость шара. (6) R=lsin(альфа), где l - длина нити. Собрав вместе формулы (3,4,5,6) окончательно получаем Т=2п*КОРЕНЬ(lcos(альфа)/(g-a))

Вопрос к решению?
Нашли ошибку?

Добавил slava191, просмотры: ☺ 3070 ⌚ 05.01.2014. физика 10-11 класс

Решения пользователелей

Хочешь предложить свое решение? Войди и сделай это!
Лучший ответ к заданию выводится как основной

Написать комментарий

Последние решения
Разделим на х
y`-(1/x)*y=lnx/(x^2)

Линейное, первого порядка

Решают методом вариации произвольной постоянной или методом Бернулли.

В любом случае приходится решить два уравнения с разделяющимися переменными.

Метод Бернулли.
Решение y представлено в виде произведения двух [b]произвольных [/b]функций.

y=u*v
y`=u`*v+u*v`

Подставляем в уравнение:

u`*v+u*v`-(1/x)*u*v=lnx/(x^2)

u`*v+u*(v`-(1/x)*v)=lnx/(x^2)


Функцию v=v(x) выбирают так, чтобы

[b]v`-(1/x)*v=0[/b]

тогда

[b]u`*v-u*0=lnx/(x^2)[/b]


Решаем первое уравнение с разделяющимися переменными:
v`-(1/x)*v=0

dv/v=dx/x

ln|v|=ln|x|

[b]v=x[/b]

Решаем первое уравнение с разделяющимися переменными:

u`*x=lnx/(x^2)

u`=lnx/(x^3)

u= ∫ lnxdx/(x^3)=-lnx/(-2x^2)+(1/2) ∫ dx/x^3=

=-lnx/(-2x^2)-(1/(4x^2))+C

cчитали по частям

u=lnx; du=dx/x

dv=dx/x^3
v=-1/(2x^2)

Общее решение: y=(-lnx/(-2x^2)-(1/(4x^2))+C)*х можно раскрыть скобки.

Так как
y(1)=0
найдем частное решение:

0=-ln1/(-2)-(1/4)+C
C=1/4

y=(-lnx/(-2x^2)-(1/(4x^2))+(1/4))*х- частное решение
[удалить]
✎ к задаче 37478
Преобразования линейные - значит постоянный множитель можно выносить за знак преобразования

(T_(2) o T_(1))(v)=T_(2) (T_(1)v)=T_(2) (7v-7u)=7T_(2)v-7T_(2)u=

=-7*(4v+5u)-7*(6v+2u)=-28v-35u-42v-14u= [b]-49u-70v [/b]

(T_(2) o T_(1))(u)=T_(2) (T_(1)u)=T_(2) (-7v-6u)=-7T_(2)v-6T_(2)u=

=-7*(4v+5u)-6*(6v+2u)=-28v-35u-36v-12u= [b]-64v-47u [/b]
[удалить]
✎ к задаче 37470
Находим абсциссы точек пересечения графиков
3x^2+1=3x+7
3x^2–3x–6=0
x^2–x–2=0
D=9
x_(1)=–1; x_(2)=2

V=π ∫ ^(2)_(-1) ((3x+7)^2-(3x^2+1)^2)dx=

=π ∫ ^(2)_(-1) (9x^2+42x+49-9x^4-6x^2-1)dx=

=π ∫ ^(2)_(-1) (3x^2+42x+48-9x^4)dx=

=π*(x^3+21x^2+48x-(9x^5/5))|^(2)_(-1)=

=π*(2^3-(-1)^3+21*(4-1)+48(2-(-1))-(9/5)*(32-(-1)))=

=π*(9+63+144-(297/5))= [b]π*(183/5)[/b]
(прикреплено изображение) [удалить]
✎ к задаче 37473
Находим абсциссы точек пересечения графиков
3x^2+1=3x+7
3x^2-3x-6=0
x^2-x-2=0
D=9
x_(1)=-1; x_(2)=2

S= ∫^(2)_(-1) (3x+7-(3x^2+1))dx= ∫^(2)_(-1) (3x+6-3x^2)dx=

=((3x^2/2)+6x-(3x^3/3))|^(2)_(-1)=

=(3/2)*(4-1)+6*(2-(-1))-(2^3-(-1)^3)=

=(9/2)+18-9= [b]13,5[/b]
(прикреплено изображение) [удалить]
✎ к задаче 37475
(прикреплено изображение) [удалить]
✎ к задаче 37468