ЗАДАЧА 26 В прямоугольном треугольнике ABC из

УСЛОВИЕ:

В прямоугольном треугольнике ABC из вершины прямого угла С проведены биссектриса CL и медиана СМ. Найдите площадь треугольника ЛВС, если LM = а, СМ = b.

РЕШЕНИЕ:

Заметим, что AM = MB = b. Обозначим BC = xf ЛС = у.
Пусть х<у. Тогда по свойству биссектрисы треугольника

ВОПРОСЫ ПО РЕШЕНИЮ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

ОТВЕТ:

в решение

Нужна помощь?

Опубликовать

Готовься с нами!

Готовишься к ЕГЭ по Математике? А почему не с нами?
Начать подготовку

Добавил slava191 , просмотры: ☺ 5563 ⌚ 18.11.2013. математика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.
Увы, но свой вариант решения никто не написал... Будь первым!

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

Kadridin11 ✎ x(2x-5)=0 x=0 и x=5/2 к задаче 22648

SOVA ✎ DA имеет длину 11 =12-1 4+1=5 11:5=2,2 в одной части 2,2*4=8,8 первой части ( в АК) 1+8,8=9,8 - координата точки К к задаче 22649

SOVA ✎ Раскладываем левую часть уравнения на множители 2х*(х-5)=0 х=0 или х=5 к задаче 22648

vk35978205 ✎ количество молей фтора n=N/Na=4,515*10^23/6,02*10^23= 0.75 моль V=Vm*n=22.4*0.75=16.8 л к задаче 22591

SOVA ✎ По условию парабола у=2x^2+ax+b пересекает ось Ох дважды, т.е квадратное уравнение 2x^2+ax+b=0 имеет два корня х_(о) и х_(D) 2x^2_(o)+ax_(o) +b=0 2х^2_(D)+ax_(D)+b=0 вычтем 2(x^2_(o)-x^2_(D))+а*(x_(o)-x_(D))=0 ((x_(o)-x_(D))*(2x_(o)+2x_(D)+а)=0 x_(o)-x_(D)≠0, точки по условию различны. Значит 2x_(o)+2x_(D)+а=0 (x_(o)+x_(D))=-a/2 (# 1) точка касания расположена на оси Ox, значит (x_(o);0) Составим уравнение касательной к параболе у=2x^2+ax+b. f(x)=2x^2+ax+b f(x_(o))=0, f`(x)=4x+a f`(x_(o))=4x_(o)+a y-0=(4х_(о)+a)*(x-x_(o)) - уравнение касательной к первой параболе. Составим уравнение касательной к параболе у=2x^2+ax+b. f(x)=-5x^2+сx+d f(x_(o))=0, f`(x)=-10x+c f`(x_(o))=-10x_(o)+c y-0=(-10х_(о)+c)*(x-x_(o)) - уравнение касательной ко второй параболе. Касательная общая, значит 4х_(о)+a=-10х_(о)+c ( угловые коэффициенты равны) 14x_(o) + a - c =0 x_(o)=(c-a)/14 ( # 2) У точек А;В и D - одинаковые абсциссы. Найдем ординаты. Точка А лежит на второй параболе Точка В на касательной А(x_(D);-5x^2_(D)+cx_(D)+d) В(х_(D);(4х_(о)+a)(x_(D)-x_(o)) D(х_(D); 0) |AD|=|-5x^2_(D)+cx_(D)+d| -5x^2_(o)+сx_(o) +d=0 d=5x^2_(o)-сx_(o) |AD|=|-5x^2_(D)+cx_(D)+5x^2_(o)-сx_(o)|= =|x_(o)-x_(D)|*|5x_(o)+5x_(D)-c| |ВD|=|x_(o)-x_(D)|*|4x_(o)+a| |DА|:|DВ|=|5x_(o)+5x_(D)-c|/|4x_(o)+a| так как (x_(o)+x_(D))=-a/2 ( # 1) x_(o)=(c-a)/14 ( # 2) |DА|:|DВ|=|5x_(o)+5x_(D)-c|/|4x_(o)+a|= =|5*(-a/2)-c|/|(4*(c-a)/14)+a|= =|(-5a-2c)/2|/|(2c+5a)/7|=7/2 О т в е т. 7/2 к задаче 22644