cosx·(cos2x·sin3x–(1/2)sinx)=0
cosx=0 ⇒ x=(π/2)+πk, k∈Z
ИЛИ
cos2x·sin3x–(1/2)sinx)=0
cos2x·cos((π/2)–3x)–(1/2)sinx=0
(1/2)cos(π/2)–x)+(1/2)cos(π/2–3x–2x)+(1/2)sinx=0
(1/2)sinx+(1/2)cos(π/2–5x)+(1/2)sinx=0
sinx5x=0
5x= πn, n∈Z
x= (π/5)n, n∈Z
О т в е т. x=(π/2)+πk, k∈Z и (π/5)n, n∈Z