cosx*(cos2x*sin3x-(1/2)sinx)=0
cosx=0 ⇒ x=(π/2)+πk, k∈Z
ИЛИ
cos2x*sin3x-(1/2)sinx)=0
cos2x*cos((Pi/2)-3x)-(1/2)sinx=0
(1/2)cos(Pi/2)-x)+(1/2)cos(Pi/2-3x-2x)+(1/2)sinx=0
(1/2)sinx+(1/2)cos(Pi/2-5x)+(1/2)sinx=0
sinx5x=0
5x= πn, n∈Z
x= (π/5)n, n∈Z
О т в е т. x=(π/2)+πk, k∈Z и (π/5)n, n∈Z