✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 25498 11) Выпишите слово, в котором на месте

УСЛОВИЕ:

11) Выпишите слово, в котором на месте пропуска пишется буква Е.

расчист..шь
ненавид..мый
верт..шься
вывал..вшийся
встревож..нный

РЕШЕНИЕ ОТ vk444677550 ✪ ЛУЧШЕЕ РЕШЕНИЕ

Ответ: встревожЕнный .
1. расчистишь . Если слово - глагол находится в первом спряжении, тогда окончание следует писать '' ешь '', а если во втором спряжении, то следовательно окончание пишем '' ишь ''.
2. ненавидЕть - ненавидЕвший, но ненавидИмый.
3. вертИшься , 2 спряжение , - ИШЬ.
4. вывалИвшийся . Суффиксы –лив-, -чив-. В этих суффиксах всегда пишется гласная –и-, так как суффиксов –чев- или –лев- в русском языке нет
5. встревожЕнный . , суффикса -ИНН нет, ну логично что -ЕНН . Надо запомнить)

Вопрос к решению?
Нашли ошибку?

Добавил slava191, просмотры: ☺ 1373 ⌚ 27.03.2018. русский язык 10-11 класс

Решения пользователей

РЕШЕНИЕ ОТ SOVA

встревожЕнный

Вопрос к решению?
Нашли ошибку?
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
Взаимодействуют с одинаковой силой F
a=F/m
a1=F/3
a2=F/1
второе получит больше в 3 раза.
✎ к задаче 40702
Прямая АВ имеет угловой коэффициент, равный (-1)
См. рис.

Симметричная ей относительно оси Оу прямая имеет угловой коэффициент, равный 1

Можно составить уравнение прямой АВ

y=kx+b

Подставим координаты точек А и В:
{3=-k+b
{2=0*k+b


b=2
k=-1

угловой коэффициент прямой АВ :
k_(AB)=-1

(прикреплено изображение)
✎ к задаче 40718
Задача на круги Эйлера.
Не может быть пересечение больше
(прикреплено изображение)
✎ к задаче 40720
Области существования выражения, стоящего под знаком логарифма: x^2+6x+9 >0 ⇒ (x+3)^2 >0 ⇒ x ≠ 3

Находим нули числителя:
2x^2+9x+7=0
D=81-4*2*7=81-56=25
x_(1)= - 3,5; x_(2)= -1


Отмечаем их на области сплошным закрашенным кружком

Находим нули знаменателя:

log_(3)(x^2+6x+9)=0

x^2+6x+9=3^(0)
x^2+6x+8=0
D=36-32=4
x_(3)=-4; x_(4)=-2

Отмечаем пустым, не заполненным кружком.

Расставляем знаки:
Числитель неотрицателен на (- ∞ ;-3,5] U [-1;+ ∞ )

Знаменатель положителен на (- ∞ ;-4) U (-2;+ ∞ )

Дробь положительна, когда числитель и знаменатель имеют одинаковые знаки( оба положительны или оба отрицательны)

_+_ (-4)_-_ [-3,5] _+_ (-3) __+__ (-2) __-__ [-1] __+__

О т в е т. (- ∞ ;-4)U[3,5;-3) U(-3;2)U[-1;+ ∞ )
✎ к задаче 40721
Корни есть и они различные, значит D >0

D=(2(a-2))^2-4*(a^2-2a-3)=4a^2-16a+16-4a^2+8a+12=28-8a

28-8a >0

a< \frac{7}{2}

Корни положительные, значит парабола y=x^2-2(a-2)x+a^2-2a-3
пересекает ось Ох справа от нуля.

Значит вершина параболы правее нуля, т.е
x_(o)=a-2
x_(o) >0

a-2 >0

Значение функции y=x^2-2(a-2)x+a^2-2a-3 при х=0 положительно.
y(0)=a^2-2a-3

Система:
{a< \frac{7}{2}
{a-2 > 0 ⇒ a > 2
{a^2-2a-3 >0 ⇒ D=16; корни -1 и 3, a<-1 или a>3


О т в е т. (3;3,5)

(прикреплено изображение)
✎ к задаче 40717