ЗАДАЧА 2498 В системе, показанной на рисунке, m1=m,

УСЛОВИЕ:

В системе, показанной на рисунке, m1=m, m2=5m, M=6m. Найдите ускорение груза M, если между остальными грузами и столом имеется трение с коэффициентом =05. Принять g=10 м/с^2, массой блоков и трением в их осях пренебречь. Ответ выразить в м/с^2.

РЕШЕНИЕ:


ВОПРОСЫ ПО РЕШЕНИЮ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

ОТВЕТ:

5

Нужна помощь?

Опубликовать

Добавил slava191 , просмотры: ☺ 1298 ⌚ 13.12.2014. физика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.

РЕШЕНИЕ ОТ slava191

Yes
ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

РЕШЕНИЕ ОТ slava191

Yes
ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

РЕШЕНИЕ ОТ slava191

Yes
ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

РЕШЕНИЕ ОТ slava191

Yes
ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

РЕШЕНИЕ ОТ slava191

Yes
ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

SOVA ✎ |sin(x/3)| меньше или равно 1 ОДЗ: 25-x^2 больше или равно 0 -5 меньше или равно x меньше или равно 5 см. графическое решение у=sin(x/3) и y=√(25–x^2)+x^2–25 (y= sqrt(t)-t, t=25-x^2) пересекаются в ОДНОЙ ТОЧКЕ (!) к задаче 22738

SOVA ✎ (x-2)/x^3-x*(2-x)=0 (x-2)/x^3+x*(x-2)=0 (x-2)*((1/x^3)+x)=0 (x-2)(1+x^4)/x^3=0 x-2=0 x=2 О т в е т. 2 к задаче 22733

SOVA ✎ а1=1, а_(n+1)=2*a_(n)+1 a_(2)=2a_(1)+1=2*1+1=3 a_(3)=2a_(2)+1=2*3+1=7 a_(4)=2a_(3)+1=2*7+1=15 a_(5)=2a_(4)+1=2*15+1=31 к задаче 22734

u852616443 ✎ Давление p=F/S , F=mg , т.к. тело покоится. S=a^2 т.к квадрат, отсюда следует p=mg/a^2, P= 14*10/0,49= 286 округленно. к задаче 22723

SOVA ✎ Раскрываем модуль по определению. 1) Если 2x^2+3x–2 больше или равно 0 (х меньше или равно -2 или х больше или равно (1/2) то |2x^2+3x–2|=2x^2+3x-2 и уравнение имеет вид 2x^2+3x-2=8х-2x^2-a; 4x^2-5x+(a-2)=0 - квадратное уравнение с параметром. Имеет два корня, один или ни одного. Это зависит от дискриминанта. D=25-16*(a-2)=57-16a Если D < 0 - нет корней 57-16a < 0 a > 57/16 Если D=0 ,т.е. a=57/16 x1=x2=5/8 удовл. условию x > 1/2 Если D > 0, т.е. a < 57/16 два корня x1=(5-sqrt(57-16a))/8 или x2=(5+sqrt(57-16a))/8 При этом надо проверить, при каких а корни удовлетворяют условию 2x^2+3x–2 больше или равно 0 2) Если 2x^2+3x–2 < 0 ( -2 < х < (1/2)) то |2x^2+3x–2|= - 2x^2- 3x + 2 и уравнение имеет вид - 2x^2 - 3x + 2=8х-2x^2-a; 11x=a+2- линейное уравнение, имеет ед корень х=(а+2)/11 Найдем при каких а этот корень является решением уравнения, т.е при каких а -2 < (a+2)/11 < (1/2) - верно. -22 < a+2 < 11/2 -24 < a < 3,5 При а ∈ (-24; 3,5) х=(а+2)/11 - корень к задаче 22730