sin(x/2) ≠ 0⇒ (x/2)≠ πn, x≠ 2πn, n ∈ Z
cos(x/2) ≠ 0⇒ (x/2)≠(π/2)+ πm, x≠ π+2πm, m ∈ Z
1/tg(x/2)=ctg(x/2)=cos(x/2)/sin(x/2);
1/ctg(x/2)=tg(x/2)=sin(x/2)/cos(x/2);
1/tg(x/2) – 1/ctg(x/2)=
=cos(x/2)/sin(x/2)– sin(x/2)/cos(x/2)=
=(cos2(x/2)–sin2(x/2))/sin(x/2)·cos(x/2)=
=2cosx/sinx=2ctgx
2ctgx–1–2ctgx=sin2x
sin2x=–1
2x=(–π/2)+2πk, k ∈ Z
x=(–π/4)+πk, k ∈ Z
О т в е т. (–π/4)+πk, k ∈ Z