6x=t
t > 0
6x+1=6t
36x=t2
(t2–6t+3)/(t–5) + (6t–39)/(t–7) ≤ t+5
Переносим все слагаемые влево и приводим к общему знаменателю
((t2–6t+3)·(t–7)+(6t–39)·(t–5)–(t+5)(t–5)·(t–7))/(t–5)(t–7) ≤ 0
(–25t+139)/(t–5)(t–7) ≤ 0
с учетом t > 0
(0) ___+____ (5) __–__ [139/25] __+__ (7) ___–_____
5 < t ≤ 139/25 или t > 7
log65 < x ≤ log6 (139/25) или x > log67
О т в е т. (log65; log6(139/25)]U(log67; +
∞ )