построенная как на диаметре на катете ВС
прямоугольного треугольника ABC, пересекает
гипотенузу АВ в точке D, отличной от В,
причём AD = a,BD = 3a. Проведём
медиану СМ. Тогда AM = СМ = 2а, а т. к. точка D
лежит на окружности с диаметром ВС, то
ZCDB = 90°.
В прямоугольном треугольнике CDM
гипотенуза СМ, равная 2а, вдвое больше
катета DM:
DM = AM - AD = 2a- a = a.
Поэтому ZDCM = 30°, a ZAMC = 60°. Угол при вершине М
равнобедренного треугольника АМС равен 60°. Следовательно,
треугольник АМС равносторонний. Поэтому
ABAC = 60°, ZABC = 90° - ABAC = 30°.
Ответ: 30°, 60°.