Найти производные функций.
В пункте в) найти вторую производную:
Вариант 9:
а) [m] y = - \sqrt{x} - \operatorname{arctg} \sqrt{x} [/m]
б) [m] y = \cos^3{3x} - \sin^3{3x} [/m]
в) [m] y = x \cdot e^{x^2} [/m]
=1/(2√x) · (1 – (1/(1+х))=х/(2·(1+х)·√x)
y`=(cos5(3x))`·sin3(5x)+cos5(3x) · (sin3(5x))`= 5·(cos43x)·(–sin3x)·3·(sin35x) + (cos53x)·(3sin25x)·(cos5x)·5=
=–15(cos43x)·(sin3x)(sin35x)+15(cos53x)·(sin25x)·(cos5x)=
=15(cos43x)·(sin25x)·(cos3x·cos5x–sin5x·sin3x)=
=15(cos43x)·(sin25x)·(cos(5x–3x)=
=15(cos43x)·(sin25x)·(cos2x)
y`=(x)`·e–x2+(x)·(e–x2`=
=e–x2+x·(e–x2·(–x2)`=
=e–x2+x·(e–x2·(–2x)=
=e–x2·(1–2x2)
y``=(e–x2)`·(1–2x2) + (e–x2)·(1–2x2)`=
=(e–x2)·(–x2)`·(1–2x2) + (e–x2)·(–4x)=
=e–x2·(4x2–6x)