{ x + y = π/4 { sin²x + sin²y = 1
По формуле понижения степени sin2 α =(1–cos2 α )/2 (1–cos2x)/2+(1–cos2y)/2=1 cos2x+cos2y=0 {y=(π/4)–x; {cos2x+cos((π/2)–2x)=0 2cos(π/4)·cos(2x–(π/4))=0 2x–(π/4)=(π/2)+πk, k ∈ Z x=(3π/8)+(π/2)k, k ∈ Z y=(–π/8) – (π/2)k, k ∈ Z